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ABSTRACT

Meta-analysis of gene expression has enabled nu-
merous insights into biological systems, but current
methods have several limitations. We developed a
method to perform a meta-analysis using the elastic
net, a powerful and versatile approach for classifica-
tion and regression. To demonstrate the utility of our
method, we conducted a meta-analysis of lung can-
cer gene expression based on publicly available data.
Using 629 samples from five data sets, we trained
a multinomial classifier to distinguish between four
lung cancer subtypes. Our meta-analysis-derived
classifier included 58 genes and achieved 91% ac-
curacy on leave-one-study-out cross-validation and
on three independent data sets. Our method makes
meta-analysis of gene expression more systematic
and expands the range of questions that a meta-
analysis can be used to address. As the amount of
publicly available gene expression data continues to
grow, our method will be an effective tool to help
distill these data into knowledge.

INTRODUCTION

The amount and continued growth of publicly available
gene expression data are staggering. NCBI GEO and Array-
Express currently have available more than 1.6 million sam-
ples spread across more than 54 000 studies (1,2). To take
advantage of all these data, meta-analysis of gene expres-
sion has become an important tool (3). By combining mul-
tiple data sets, a meta-analysis can gain statistical power and
overcome the biases of individual studies (4). Meta-analysis
of gene expression has been used to uncover disease sub-
types (5), to predict survival (6) and to discover biomarkers
and therapeutic targets (7–9).

Despite those successes, current methods for meta-
analysis of gene expression have several limitations. Of-
ten the goal of a meta-analysis is to obtain a small set of
genes whose expression correlates with the variable of in-
terest, such as healthy versus disease. Most current meth-

ods select genes based on univariate summary statistics,
such as P-value of differential expression. As a result, cur-
rent methods struggle to select genes that each contribute
non-redundant information and to systematically deter-
mine (e.g. with cross-validation) how many genes to in-
clude in the set. Such methods are also difficult to generalize
when comparing more than two conditions. Finally, meta-
analyses whose goal is diagnosis or prognosis often need to
account for additional variables, such as histological find-
ings or patient characteristics. Unfortunately, incorporating
covariates into a meta-analysis of gene expression is a prob-
lem that currently has no general solution.

The elastic net (10), a generalization of ridge regression
(11) and the lasso (12), is a powerful and versatile method
for classification and regression. The elastic net is a regu-
larization method for fitting a generalized linear model. Be-
cause the elastic net builds a multivariate predictive model,
it is amenable to cross-validation and can easily assimilate
continuous and categorical features. In addition, the elastic
net can perform feature selection, which means the result-
ing model can include as few features as desired. The elastic
net has found use in numerous and diverse applications, in-
cluding identification of genomic markers of drug sensitiv-
ity (13), development of a predictor of age based on DNA
methylation (14) and identification of risk factors for binge
drinking (15). The elastic net is particularly well suited to
genome-scale data, which typically has many more features
than observations. Despite its power and versatility, how-
ever, the elastic net has not been applied to meta-analysis.

In this work, we describe a methodological framework
for using the elastic net to perform a meta-analysis of gene
expression. To show how our approach addresses the lim-
itations of previous methods, we perform a meta-analysis
of lung cancer gene expression based on publicly available
data. Our meta-analysis results in a robust and accurate
multinomial classifier that distinguishes between four lung
cancer subtypes using a small set of genes. Our method also
enables us to rigorously demonstrate the value of a meta-
analysis, in that training a classifier on multiple studies im-
proves prediction compared to training a classifier on only
one study.
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MATERIALS AND METHODS

Meta-analysis of lung cancer gene expression

We curated data from eight publicly available microarray
studies of lung cancer (Supplementary Table S1). For each
study, we used the information regarding each sample’s can-
cer subtype, as well as any information regarding patient
sex, age and smoking status, as provided. For GSE11969,
smoking history was converted from Brinkman index (num-
ber of cigarettes per day multiplied by number of years of
smoking) to either ‘current’ (if Brinkman index was greater
than zero) or ‘never’ otherwise. For visualizing the samples
using t-SNE, we used samples corresponding to cancer sub-
types that were present in at least two studies. For our meta-
analysis, we used only the samples in each data set that were
histologically defined as adenocarcinoma (AD), squamous
cell carcinoma (SQ), small cell lung carcinoma (SCLC), or
carcinoid (CAR). The discovery data sets were selected to
include a variety of microarray platforms and to have a suf-
ficient number of samples of SCLC and CAR. Because the
Bhattacharjee data set is very heavily biased toward AD,
but also has samples from the other subtypes, we included
only 60 of the AD samples. Altogether, the merged discov-
ery data comprised 639 samples and 7200 genes that were
present in all five discovery data sets. We used α = 0.9 for the
elastic net penalty, where α = 0 corresponds to ridge (L2-
norm penalty) and α = 1 corresponds to lasso (L1-norm
penalty). Lower values of α led to a classifier with more
genes, but with identical performance. We always set glm-
net’s intercept option to true, although setting it to false did
not appreciably affect the results. When calculating accu-
racy, the predicted class for each sample was taken to be the
class with the highest probability.

Processing each data set

Each data set should first be curated to include the sam-
ples of interest and any information for each sample that
the classifier will use, such as cancer subtype. Expression
values in each data set are normalized and log-transformed
(or equivalent). Raw Affymetrix data are normalized us-
ing RMA (16) and mapped to Entrez Gene IDs using cus-
tom CDFs (17). If raw data are not available, processed
GEO data are fetched using GEOquery (18) and microar-
ray probes are mapped to Entrez Gene IDs (R package
org.Hs.eg.db for human genes). For processed data, if multi-
ple probes map to the same Entrez Gene ID, the expression
value for that Entrez Gene ID is calculated as the median
of the expression values of those probes. Missing expression
values (for genes whose expression is present for some sam-
ples and not others in the data set) are imputed using nearest
neighbor imputation (R package impute).

Merging data sets

In our framework for meta-analysis, first the data sets are
merged, then the analysis is done (19). One challenge with
a meta-analysis of gene expression is that each data set may
have expression values for a slightly different set of genes.
In order to use the elastic net, the expression data are re-
duced to the set of genes that are common to all data sets

being merged. Each data set is then globally scaled (across
all genes and samples) to have mean 0 and standard devia-
tion 1, a step which we have found improves the robustness
of ComBat’s cross-study normalization. ComBat, an em-
pirical Bayes method, is then used to perform cross-study
normalization (20). Importantly, our cross-study normal-
ization does not use the sample metadata (e.g. cancer sub-
type). Because the goal of our method is to predict that in-
formation, it must be treated as unknown in the merging
step.

Using the elastic net

When we refer to the ‘elastic net,’ we mean the method of
using the elastic net penalty to fit a generalized linear model
(GLM), as implemented in the R package glmnet (21). Be-
fore the merged gene expression data are passed to glm-
net, the values for each gene are centered to zero. Glm-
net’s standardize option is then set to false. If the distri-
bution of classes (e.g. types of cancer) in the training set
is representative of the expected distribution in the testing
set, i.e. they are an accurate prior, then glmnet’s intercept
option can be set to true. If desired, additional variables
can be added alongside the genes. Categorical variables can
be incorporated as dummy variables. Continuous variables
should be scaled to have the same mean and standard devi-
ation as the gene expression data. By default, when training
the classifier, the samples are weighted such that each study
is weighted equally, although this can be adjusted.

The objective function of the elastic net takes the form of
‘loss + penalty’:

min
β0,β

1
N

N∑
i=1

wi l(yi , β0 + βT xi ) + λ
(

(1 − α)||β||22/2 + α||β||1
)

,

where β0 and β are the coefficients of the GLM, N is the
number of observations (i.e. samples), wi is the weight of
observation i, l(y,η) is the negative log-likelihood contribu-
tion for observation i (the functional form of l depends on
the type of model being fit), λ is the regularization parame-
ter (which controls the amount of shrinkage), α is the elastic
net penalty (which controls the balance between ridge and
lasso regression), ‖β‖2 is the L2-norm of β and ‖β‖1 is the
L1-norm of β. The weights are scaled such that

N∑
i=1

wi = N.

If there are M batches (i.e. studies), then to achieve equal
weighting of each batch, we set

wi = M
ni

,

where ni is the number of observations in the batch to which
observation i belongs.

Cross-validation of elastic net classifier

After merging the discovery data sets, cross-validation is
performed to determine how the performance of the clas-
sifier depends on the regularization parameter of the elas-
tic net. By default, our method uses leave-one-study-out
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cross-validation, although random n-fold cross-validation
is also possible. Using leave-one-study-out cross-validation
requires that each class has samples from at least two stud-
ies.

Validating the classifier on independent data sets

Our procedure for validation is designed so that each val-
idation data set is tested independently of the others. For
each validation data set, all discovery data sets and the cur-
rent validation data set are merged in the manner described
above. Note that the set of genes in this merged data set may
be slightly smaller than the set of genes in the merged dis-
covery data set that was used for cross-validation. In partic-
ular, a gene in the classifier from cross-validation might not
have been measured in the current validation data set. In ad-
dition, the inclusion of the validation data set may slightly
alter the cross-study-normalized expression values. There-
fore, after merging the data sets, a new classifier is trained
on the samples from the discovery data sets using the reg-
ularization parameter obtained from previous leave-one-
study-out cross-validation. Again, samples from the discov-
ery data sets are weighted such that each study is weighted
equally. The classifier is then tested on the samples from the
current validation data set. The process is repeated for each
validation data set.

RESULTS

Approach for performing meta-analysis using the elastic net

Our approach can be divided into three stages (Figure 1). In
the first stage, each data set is processed individually, which
includes normalization and mapping probes to Entrez Gene
IDs. In the second stage, discovery data sets are merged
and the elastic net is used to perform cross-validation. One
of the results of cross-validation is a value for the regu-
larization parameter lambda, which determines how much
shrinkage is used to train the model. In the third stage, each
validation data set is individually merged with the discov-
ery data sets, the elastic net and the pre-determined value
of lambda are used to train a model on the discovery sam-
ples, then the model is tested on the validation samples. At
every step in which data sets are merged, only Entrez Gene
IDs measured on every data set being merged are included,
and cross-study normalization is performed using ComBat
(20).

To demonstrate the utility of our method, we conducted
a meta-analysis of lung cancer gene expression using pub-
licly available data. Our goal was to use multiple studies to
build a robust multinomial classifier containing a small set
of genes that could distinguish between several lung can-
cer subtypes. Such a classifier and corresponding gene set
could aid development of better diagnostic tools and could
inform our understanding of the biology of the respective
subtypes, but could not be built using existing methods for
meta-analysis.

Unsupervised analysis of lung cancer subtypes

We first curated eight publicly available data sets contain-
ing samples of various lung cancer subtypes (Supplemen-
tary Table S1 and (22–29)). We then analyzed the data in

an unsupervised manner, to verify that samples of the same
subtype clustered together, i.e. the existing subtypes are ap-
propriate for classification. Samples from all eight data sets
were merged and visualized using the non-linear dimen-
sionality reduction algorithm called t-SNE, which excels at
revealing the structure of high-dimensional data sets (30).
Based on the results of t-SNE (Figure 2), we chose to use
four subtypes for our multinomial classifier: AD, SQ, SCLC
and CAR. We selected five of the eight data sets for dis-
covery and three for validation, such that each of the four
subtypes was represented in at least two discovery data sets.
Due to the limited number of data sets with samples for
SCLC and CAR, however, only two of the five discovery
data sets contained samples from all four subtypes (Supple-
mentary Table S1).

Training the multinomial classifier based on multiple data sets

We next merged only the discovery data sets and used the
elastic net to perform leave-one-study-out cross-validation
across a range of values of the regularization parameter
lambda (Figure 3 and Supplementary Figure S1). As the
regularization parameter increases, the elastic net imposes
more shrinkage on the coefficients of the model, resulting in
a model with fewer features (in this case, genes). For training
a multinomial classifier, an appropriate loss function is the
multinomial deviance (31). Importantly, the multinomial
deviance did not monotonically decrease as the regulariza-
tion parameter decreased. This result implies that there is an
optimal number of genes to include in the classifier, and in-
cluding more genes beyond that optimum actually worsens
the classifier’s performance.

At the value of the regularization parameter that gave the
lowest multinomial deviance, the overall accuracy (fraction
of correctly classified samples) of the multinomial classifier
on cross-validation was 91.2% (Supplementary Figure S2,
Supplementary Table S2). Prediction accuracies for the four
cancer subtypes ranged from 74% (SCLC) to 97% (AD).
Using that value of the regularization parameter, we trained
a classifier on all samples from the discovery data sets. The
resulting classifier contained 58 genes (Figure 4). Similar
to previous work using regularization to build a multino-
mial classifier (32), the genes with non-zero coefficients for
each subtype are almost mutually exclusive. In support of
our methodology, the expression of the 58 genes differed be-
tween subtypes across the multiple discovery data sets (Sup-
plementary Figure S3).

Successful validation on independent data sets

To further test our method, we validated the classifier on
three independent data sets (Figure 5). Our approach for
validation accounts for the possibility that a gene might
have been measured in the discovery data sets, but not in
a particular validation data set (Figure 1). Across the three
validation data sets, the overall accuracy was 91.3% (Sup-
plementary Table S3), nearly identical to that obtained dur-
ing cross-validation. The accuracy of our classifier is sim-
ilar to that reported for a microRNA-based diagnostic as-
say targeting the same four lung cancer subtypes (33). These
results indicate that our method can successfully extract a
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Figure 1. Workflow for performing a meta-analysis of gene expression using the elastic net. In example, three data sets are used for discovery and two are
used for validation. In each data set, genes are in rows and samples are in columns. Genes not measured on every data set being merged are removed. The
genes highlighted in magenta were not measured on every discovery data set. The gene highlighted in orange was measured on every discovery data set
and on validation data set 1, but not on validation data set 2. The gene highlighted in yellow was measured on every discovery data set and on validation
data set 2, but not on validation data set 1. After data sets are merged, batch effects are corrected using ComBat. The optimal value of the regularization
parameter λ obtained from cross-validation is used to train the models in the validation phase.
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Figure 2. t-SNE plot of gene expression in lung cancer samples from eight publicly available data sets. Data sets were merged as described in Methods. Each
point corresponds to one sample. The letter corresponds to the data set. The color corresponds to the subtype: adenocarcinoma (AD), adenosquamous
(ADSQ), carcinoid (CAR), large cell carcinoma (LC), large cell neuroendocrine carcinoma (LCNE), small cell lung carcinoma (SCLC), or squamous (SQ).
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Figure 3. Multinomial deviance as a function of the regularization param-
eter lambda for leave-one-study-out cross-validation on the discovery data
sets. Points correspond to the mean, error bars correspond to the standard
deviation. The blue dashed line marks the value of lambda at which the
multinomial deviance is at a minimum.

robust signal from gene expression data derived from multi-
ple studies. Furthermore, our approach can produce an ac-
curate multinomial classifier, even if not all discovery data
sets have samples from all classes.

Combining discovery data sets improves classifier perfor-
mance

We compared the performance of the classifier trained on all
the discovery data sets against that of classifiers trained on
only GSE30219 or only the Bhattacharjee data set (the two
discovery data sets with samples from all four subtypes).
For each of the two classifiers, the value of the regulariza-
tion parameter was determined by 5-fold cross-validation
on the samples of the respective data set. For the classi-
fier trained on GSE30219, the overall accuracy on the val-
idation data sets was 87.8%, only marginally worse than
the performance of the classifier trained on all the discov-
ery data sets (Supplementary Table S4). For the classifier
trained on the Bhattacharjee data set, however, the overall
accuracy on the validation data sets dropped to 76.1% (Sup-
plementary Table S5). These findings exemplify the power
of a meta-analysis to overcome the biases of individual stud-
ies.

The elastic net outperforms the method of nearest shrunken
centroids

Although our approach to build a predictive model based
on multiple data sets uses the elastic net, it can also be
adapted to use other machine learning techniques. Within
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Figure 4. Selected genes and their coefficients in the multinomial classifier. The classifier was trained on the discovery data sets using the regularization
parameter that gave the lowest multinomial deviance on leave-one-study-out cross-validation. Only genes with non-zero coefficients for at least one subtype
are shown. Entrez Gene ID shown in parentheses. A positive coefficient for a particular gene and subtype indicates that increased expression of that gene
increases the probability that a sample belongs to that subtype.
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Figure 5. Estimated probabilities for samples in validation data sets. The classifier was trained on the discovery data sets (merged with the respective
validation data set) using the regularization parameter that gave the lowest multinomial deviance on leave-one-study-out cross-validation. For each sample,
there are four points, corresponding to the probability that the sample belongs to the respective subtype. Within each data set, samples are partitioned by
their true subtype. Within each data set and subtype, samples are sorted by the probability of the true subtype. For most samples, the probability of the
true subtype is near 1, indicating unambiguous classification.
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the context of our lung cancer meta-analysis, we compared
the elastic net to the method of nearest shrunken centroids
called PAM (32). Similar to the elastic net, PAM uses reg-
ularization, but PAM selects genes in a univariate manner.
When restricted to a classifier of approximately 100 genes,
PAM performed comparably to the elastic net for three of
the four subtypes (Supplementary Table S6). For SCLC,
however, PAM required several thousand genes in order to
build a classifier approximately as accurate as the one based
on the elastic net (Supplementary Table S7). This disparity
in performance suggests that the multivariate model trained
using the elastic net is superior at efficiently extracting sig-
nal from genome-scale data.

Straightforward incorporation of additional features along-
side the genes

When the goal of a meta-analysis of gene expression is to
build a predictive model for diagnosis or prognosis, it is im-
portant to account for other possibly predictive variables
in addition to gene expression. Because our method merges
multiple data sets into a single matrix, additional variables,
such as patient characteristics, can simply be appended as
new features in the matrix. The elastic net, which can han-
dle both continuous and categorical features, can then build
a predictive model based on gene expression and the addi-
tional variables.

To demonstrate the feasibility of including variables us-
ing our method, we performed a second meta-analysis
of the four lung cancer subtypes. Samples from five data
sets included patient sex, age and smoking status (cur-
rent, former, or never). Using those data sets, we per-
formed leave-one-study-out cross-validation with and with-
out those three variables. We expected that at least patient
sex would be included in the classifier and would improve
prediction, because men and women have different distri-
butions of lung cancer subtypes. In particular, men have a
lower relative frequency of AD and a higher relative fre-
quency of SQ (Figure 6 and (34)). Surprisingly, however,
patient sex, age and smoking status did not improve the
classifier (Supplementary Figure S4). In fact, at the optimal
value of the regularization parameter, the classifier did not
include any of the three variables (Supplementary Figure
S5).

We hypothesized that any information contained in the
patient variables might already be present in the gene ex-
pression. We noticed that one of the genes in the classifier
(Figure 4 and Supplementary Figure S5), RPS4Y1, is on
the Y chromosome (and not on the X chromosome). In the
classifier, RPS4Y1 had a positive coefficient for SQ, mean-
ing that higher expression of RPS4Y1 increased the prob-
ability that a sample would be classified as SQ. Expression
of RPS4Y1 was strongly correlated with patient sex and was
higher in males (Figure 7). In fact, of all the genes on the Y
chromosome whose expression was measured on each data
set, RPS4Y1 had by far the largest difference in expression
between males and females (Supplementary Figure S6). We
reasoned that expression of RPS4Y1 was serving as a proxy
for patient sex. When we excluded from the meta-analysis
all genes on the Y chromosome, the elastic net selected pa-
tient sex as a feature in the classifier, with a coefficient such
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Figure 6. Relative fraction of each of the four lung cancer subtypes across
five data sets, stratified by patient sex. For each data set, samples not from
one of the four subtypes were excluded.

that a sample from a male would be given a higher proba-
bility of SQ than a sample from a female (Supplementary
Figure S7). Thus, our method enables one to smoothly as-
similate additional variables into a meta-analysis of gene ex-
pression and to evaluate whether the additional variables
improve prediction.

DISCUSSION

Our methodological framework represents a significant ad-
vance in meta-analysis of gene expression. Rather than an-
alyzing each data set separately and then combining sum-
mary statistics, our method performs cross-study normal-
ization to merge the raw data and then analyzes the merged
data using the elastic net. By expanding the reach of the
elastic net to analyze multiple studies, our method offers
several advantages compared to previous methods, includ-
ing those that directly merge the raw data (35,36). Most
importantly, the elastic net builds a multivariate, predic-
tive model and performs feature selection. As a result, one
can use cross-validation to systematically determine how
many and which genes belong in the ‘expression signature’
of the condition(s) of interest. As we demonstrate in our
meta-analysis of lung cancer subtypes, the elastic net en-
ables meta-analysis of more than two discrete conditions.
Because the elastic net can be applied to several types of re-
gression problems, our approach also makes possible meta-
analysis of continuous variables, such as survival time. Fur-
thermore, the elastic net makes it straightforward to incor-
porate additional variables alongside the gene expression,
which can reveal when a gene’s expression is related to a co-
variate and not strictly to the biology of interest.
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Figure 7. Normalized expression of RPS4Y1 across five data sets. Each point corresponds to a sample. The color corresponds to the sex of the patient
for that sample. The expression data were first normalized within each study, then normalized across studies using ComBat. For ease of visualization, one
sample from GSE29016 that had a normalized expression value of 8.3 (and was from a male patient) has been omitted. Several samples appear to have
incorrect information for patient sex.

The prediction accuracy of our multinomial classifier var-
ied considerably across the four subtypes. Several factors
could explain this behavior, in particular the relatively high
misclassification rate for SCLC. The first is the small sam-
ple size for SCLC. Other potential factors include imperfect
correction of batch effects and an inconsistent definition of
SCLC across studies. In addition, our unsupervised anal-
ysis suggests that although most samples of SCLC cluster
together, a number of AD and SQ samples have a pattern
of gene expression that is similar to SCLC (Figure 2). This
may indicate heterogeneity within AD and SQ, misdiagno-
sis, or both. Although CAR has a similar number of sam-
ples as SCLC, the gene expression of CAR seems to be quite
distinct from that of the other subtypes (Figure 2), which ex-
plains the higher prediction accuracy for CAR compared to
SCLC.

Even if prediction is not the primary goal of a meta-
analysis, our approach is useful in generating a prioritized
list of genes for further investigation. Many of the 58 genes
in our meta-analysis-derived classifier of lung cancer sub-
types are known to be relevant to lung cancer. For exam-
ple, expression of MUC1 is associated with patient outcome
(37) and MUC1 is being pursued as a therapeutic target in
both breast and lung cancer (38). Keratins, three of which
are among the 58 genes (KRT5, KRT6A and KRT13), are
reliable immunohistochemical markers of SQ (39). A num-
ber of genes in the classifier were also identified in previous
analyses of lung cancer subtypes (22,40).

Batch effects are always a concern in biological data.
Our method corrects for batch effects and performs cross-
study normalization using ComBat. Although ComBat has
worked well in our hands, one should be especially cautious
when merging data sets that are extremely unbalanced, e.g.
when one data set has samples of one disease subtype and
a second data set has samples of a different subtype. In that

case, neither ComBat nor any other algorithm can reliably
distinguish batch effects from real differential expression.
Whereas our method uses ComBat because the batch infor-
mation is known, a method called frozen surrogate variable
analysis (fSVA) is designed for prediction when the batch
information is unknown (41). In the future, it may be pos-
sible to use our approach to train a predictive model based
on multiple data sets, then use fSVA to predict the class or
outcome of new individual samples.

One caveat with our approach is that the microarray
probes in each data set are mapped to Entrez Gene IDs and
their expression is condensed to one value per Entrez Gene
ID, before the data are analyzed. This step is necessary, in
order to merge the data sets. The cost of this step, however,
is that if one probe for a gene is differentially expressed but
other probes for the gene are not, the signal from the one
probe could be drowned out by the noise of the others.

In the current implementation of our approach, the step
of merging data sets involves excluding any gene not mea-
sured on each data set. Using only the intersection of genes
may at first seem to be a severe restriction, especially as
the number of data sets increases. The size of the intersec-
tion, however, is determined not by the total number of data
sets, but by the number of unique microarray platforms.
Given that the vast majority of publicly available gene ex-
pression data are based on a small number of platforms and
that any given phenotype is typically associated with the ex-
pression of many genes, we believe that the current imple-
mentation will work well for most meta-analyses. In this re-
spect, our deliberate choice to use the Bhattacharjee data set
for discovery represents a near worst-case scenario. Exclud-
ing the Bhattacharjee data set, which was collected on the
Affymetrix HGU95Av2 GeneChip, would raise the number
of Entrez Gene IDs in the merged discovery data from 7200
to 13 609 (at the cost of losing valuable samples for SCLC
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and CAR). In the future, our method could be altered to im-
pute the expression of genes that are present in some data
sets but absent from others. Such imputation would be un-
likely to significantly improve prediction, but would allow
those genes to be included in the predictive model.

Our approach both addresses the limitations of previous
methods and expands the range of questions that can be
addressed using meta-analysis of gene expression. As the
amount of publicly available gene expression data continues
to grow, our method will be an effective tool to help distill
these data into knowledge.

AVAILABILITY

Software and instructions for performing a meta-analysis,
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