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Abstract

Urine drug screening (UDS) assays can rapidly and sensitively detect drugs of abuse but can also
produce spurious results due to interfering substances. We previously developed an approach
to identify interfering medications using electronic health record (EHR) data, but the approach
was limited to UDS assays for which presumptive positives were confirmed using more specific
methods. Here we adapted the approach to search for medications that cause false positives
on UDS assays lacking confirmation data. From our institution’s EHR data, we used our previ-
ous dataset of 698,651 UDS and confirmation results. We also collected 211,108 UDS results for
acetaminophen, ethanol and salicylates. Both datasets included individuals’ priormedication expo-
sures. We hypothesized that the odds of a presumptive positive would increase following exposure
to an interfering medication independently of exposure to the assay’s target drug(s). For a given
assay–medication pair, we quantified potential interference as an odds ratio from logistic regres-
sion. We evaluated interference of selected compounds in spiking experiments. Compared to the
approach requiring confirmation data, our adapted approach showed only modestly diminished
ability to detect interfering medications. Applying our approach to the new data, we discovered
and validated multiple compounds that can cause presumptive positives on the UDS assay for
acetaminophen. Our approach can reveal interfering medications using EHR data from institutions
at which UDS results are not routinely confirmed.

Introduction

Urine drug screening (UDS) assays play a role in various clinical
contexts, from the emergency department to outpatient rehabilita-
tion and treatment centers. Because UDS assays prioritize sensitivity
over specificity, positive UDS results can occur due to interference by
non-targeted substances, such as other medications (1). For this rea-
son, positive UDS results are considered presumptive until confirmed
by a more specific technique such as mass spectrometry. Results of

confirmatory testing, however, are often not available until several
days later, and many hospitals do not confirm presumptive positives
at all. Better knowledge of the substances that cause false positives
would help laboratorians and physicians who rely on UDS results to
guide patient care.

Recently, we developed and validated an approach, based on
statistical analysis of electronic health record (EHR) data, to iden-
tify interfering medications that cause false positive UDS results (2).
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In this initial work, we relied on confirmation data to determine
whether each presumptive positive was a true positive or a false posi-
tive. For hospitals where presumptive positives are not automatically
confirmed, however, our approach is not applicable.

In this study, we extended our approach to identify medica-
tions capable of causing false positives on UDS assays that lack
confirmation data. We validated the new approach by comparing it
against our original approach on a dataset of nearly 700,000 paired
UDS-confirmation results for 10 classes of target drugs. As proof
of principle, we then applied the new approach to data from three
UDS assays for which our institution does not automatically confirm
presumptive positives.

Methods

The Vanderbilt Institutional Review Board reviewed and approved
this study as non-human subjects research (IRB# 081418 and
190165).

Extraction of UDS results and drug exposures from
EHR data
EHR data came from the Synthetic Derivative, a collection of de-
identified clinical data from Vanderbilt University Medical Center
(VUMC) (3). In addition to using the dataset from our previous
study (2), we made a new dataset consisting of all UDS results for
the currently used assays for acetaminophen, ethanol and salicylates.
The acetaminophen (Sekure Chemistry REF L3K Rev 9/17, Burling-
ton, MA) and salicylates (Abbott Multigent REF 3K01-20 Rev 3/17,
Lake Bluff, IL) assays were validated as laboratory-developed tests,
as they are not FDA-cleared for use in urine. No other changes were
made to the assay parameters. The validations were performed in
accordance with the College of American Pathologists’ criteria and
are in routine clinical use. The ethanol assay (Abbott Multigent REF
3L36-20 Rev 2/17) was FDA-cleared for use in urine. All testing was
performed on an Abbott Architect c16000 automated chemistry ana-
lyzer. All three assays are validated to produce quantitative results,
which are converted clinically to presumptive positive or negative
results based on laboratory-defined cutoffs (Table I). The Synthetic
Derivative contains only the qualitative results.

For each person in the new dataset, we identified drug expo-
sures documented between 1 and 30 days prior to each UDS result.
We excluded UDS results that occurred less than 30 days after the
person’s first ever visit at VUMC, since we would lack a prior 30
days of documented drug exposures. Documented drug exposures
are available as structured data in the Synthetic Derivative and come
primarily from medication lists. We mapped each drug to its active
ingredient(s), which include prodrugs, using RxNorm (4). For sim-
plicity, we refer to these active ingredients as medications in the rest
of the manuscript.

As described previously, having a documented exposure within
30 days is only a proxy for being exposed at the time of providing the

urine sample (2). For example, even if a person is taking amedication
every day, the medication list is only updated when the person visits a
healthcare provider. Thus, the proxy is valid even if the medication’s
half-life is less than 30 days. As this is a retrospective analysis from
EHR data, it is impossible to verify the presence of every medication
in every patient sample.

Statistical analysis of drug exposures and UDS results
We quantified associations between drug exposures and UDS results
using Firth’s logistic regression (5, 6). Given the coefficients and
standard errors from the logistic regression fits (where each coeffi-
cient corresponded to a log odds ratio), we then used an Empirical
Bayes approach called adaptive shrinkage to estimate the posterior
mean of the log odds ratio and the corresponding 95% credible inter-
val for each assay–medication pair (7). The latter is analogous to a
confidence interval, but for Bayesian statistics.

For the re-analysis of our previous dataset, we fit two types of
logistic regression models. In model 1, the dependent variable cor-
responded to the UDS result (negative or false positive) and the
independent variable corresponded to presence or absence of prior
exposure to the medication. In model 2, the dependent variable cor-
responded to the UDS result (negative or presumptive positive) and
the independent variables corresponded to (i) presence or absence of
prior exposure to the medication and (ii) presence or absence of prior
exposure to the assay’s target drug(s) (if not the same as the medica-
tion of interest). For consistency with our previous study, we only fit
a model for an assay–medication pair if exposure to the medication
preceded a false positive (model 1) or presumptive positive (model 2)
in at least five individuals.

For the analysis of our new dataset, we fit model 2 for assay–
medication pairs for which exposure to the medication preceded
a UDS result in at least 20 individuals. Given the lack of confir-
mation data for these assays, we designed this cutoff to exclude
extremely rare medications and to potentially identify medications
associated with both higher and lower rates of presumptive positives.
For the medications most strongly associated with presumptive pos-
itive results on the acetaminophen assay, we calculated co-exposure
frequencies as the percentage of exposures to one medication for
which the person was also exposed to a second medication.

Experimental validation of interference
For each selected compound, we spiked a reference standard into
drug-free urine at various concentrations and tested the spiked urine
samples in singlicate on an Abbott Architect c16000 chemistry ana-
lyzer. Because all three assays are validated quantitatively, we used
the numeric result rather than the qualitative interpretation. We then
used linear interpolation to estimate the concentration of the test
compound at which the assay registered a concentration equal to
the cutoff.

We purchased reference standards from Tocris Bioscience
(Bristol, UK). We prepared stock solutions of each standard

Table I. Characteristics of Newly Analyzed Urine Drug Screening Assays

Number of UDS results

Target drug Format Manufacturer/brand Cutoff (µg/mL) Negative Presumptive positive

Acetaminophen Enzymatic (acyl amidohydrolase)/colorimetric Sekure Chemistry/L3K Assay 3 54,220 16,180
Ethanol Enzymatic (alcohol dehydrogenase)/colorimetric Abbott MULTIGENT 100 65,012 5,473
Salicylates Enzymatic (salicylate hydroxylase)/colorimetric Abbott MULTIGENT 5000 62,692 7,531
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in DMSO (carbidopa and entacapone), or in saline and HCl
(levodopa).We spiked the urine samples using a fixed volume of 20%
spiking solution, made of a combination of diluent and stock solu-
tion. Stock solutions made in DMSO were diluted in saline/DMSO
mixtures to ensure that the organic content did not vary with drug
concentration. To ensure that the diluents did not cause false positive
results, negative controls were prepared with matching proportions
of saline and/or DMSO and tested with each batch of samples.
In most cases, we tested up to the maximum technically feasi-
ble concentration for a compound, given the limits of solubility,
the concentration of the reference material, and the fixed 20%
spiking volume.

Results

Without the confirmation results, one cannot know whether a given
presumptive positive UDS result was a true positive or a false pos-
itive. We hypothesized, however, that the odds of a presumptive
positive would increase following exposure to an interfering med-
ication independently of exposure to the assay’s target drug(s). To
test this hypothesis, we used the dataset from our previous study (2),
which included results from urine drug screens and confirmations for
10 classes of target drugs, as well as each person’s prior documented
medication exposures (Supplementary Table 1).

We used logistic regression followed by a technique called adap-
tive shrinkage (7) to quantify two types of associations: (i) between
medication exposures and false positive UDS results, yielding an
odds ratio ORFP, and (ii) between medication exposures and pre-
sumptive positive UDS results, adjusted for exposure to assay targets
and yielding an odds ratio ORP (Supplementary Tables 2 and 3).
Thus, whereas ORFP used the confirmation results as in our previous
approach, ORP did not.

We comparedORFP andORP for assay targets, previously known
interferents, and ‘new’ interferents that we discovered in our previ-
ous study (Figure 1). Consistent with our hypothesis, most interfer-
ing medications with a high ORFP also had a high ORP (Figures 1A
and B). In addition, ranking by ORP captured only moderately fewer
interfering medications than ranking byORFP (Figure 1C). Thus, our
approach can detect medications that may cause false positive UDS
results, even if confirmation data are unavailable.

To apply our approach to new data, we extracted all UDS results
for acetaminophen, ethanol and salicylates, three assays for which
presumptive positive results at our institution are not confirmed. The
dataset included 211,108 results from 39,658 individuals (Table I),
along with each person’s documented drug exposures occurring
between 1 and 30 days prior.

Using the new dataset, we calculated ORP for 2,563 assay–
medication pairs. Further supporting our approach’s validity,
acetaminophen was the fourth-ranked medication on the aceta-
minophen assay and aspirin was the top-ranked medication on the
salicylates assay (Figure 2). Ethanol as a medication had only 16
exposures in our dataset and showed no clear associationwith results
on the ethanol assay (Supplementary Table 4).

The three medications that had a higher ORP than aceta-
minophen on the acetaminophen assay were levodopa, carbidopa
and entacapone (Figure 2). These associations were unlikely to
be due solely to co-exposure with acetaminophen, as each logistic
regression model already accounted for exposure to the respective
assay’s target drug. Co-exposure analysis indicated that the associa-
tions of levodopa and carbidopa were indistinguishable because the
two medications were almost always given together (Supplementary

Figure 1). Subsequent logistic regression also suggested that enta-
capone’s association with presumptive positive UDS results could be
explained by co-exposure with levodopa and/or carbidopa (Supple-
mentary Table 5).

We evaluated the interference of each of these three compounds
experimentally (Figure 3). Consistent with our analysis of the
EHR data, both levodopa and carbidopa interfered strongly on the
acetaminophen assay, each producing a presumptive positive (corre-
sponding to an acetaminophen concentration of 3 µg/mL) at less than
40 µg/mL. Entacapone, on the other hand, produced a presumptive
positive at 400 µg/mL.

Levodopa and carbidopa are structurally related to alpha-
methyldopamine, a metabolite of methyldopa that interferes on
our institution’s UDS assay for amphetamines (2). Methyldopa
was modestly associated with presumptive positive UDS results
for acetaminophen (ORP =1.32, rank 44 of 854, Supplementary
Table 4), and both methyldopa and alpha-methyldopamine—but
not a second metabolite 3-o-methyldopa—were strongly interfering
(Figure 3). Conversely, neither levodopa nor carbidopa interfered on
the amphetamines assay (Supplementary Table 6). Taken together,
these findings indicate that several dopamine-related compounds can
cause false positive UDS results for acetaminophen.

Discussion

Despite UDS assays’ vulnerability to interference, confirmatory test-
ing is not always available, either for patient care or secondary
analysis. Here we extended our previous approach in order to
identify potentially interfering medications from EHR data without
knowing which presumptive positive UDS results were true positives
and which were false positives. The simple idea is to find medications
associated with presumptive positives even after accounting for the
screen’s target drug(s).

We are fortunate at our institution that presumptive positive
results for most UDS assays, unless ordered through the emer-
gency department, are routinely confirmed. This allowed us to
rigorously compare, in terms of ability to detect interfering medi-
cations, the approach that does not require confirmation data to the
approach that does. Although the clinical utility of the UDS assays
for acetaminophen, ethanol and salicylates is generally low, we
used data from these assays as proof of principle that our approach
could successfully identify interfering medications without requiring
confirmation data.

EHR data are noisy, and the reliability of a medication’s odds
ratio depends on the accuracy with which exposures to that medi-
cation are documented in the EHR. More importantly, EHR data
are observational, which means our approach only quantifies cor-
relations. It does not attempt to explain which medication(s) may
have caused a given presumptive positive result. Thus, the decision of
which compounds to experimentally evaluate for interference should
involve both the statistical analysis and clinical expertise. For exam-
ple, we did not pursue the top-ranked medications on the ethanol
assay (thiamine, diazepam and naltrexone) because we considered it
likely that the associations were due to confounding with alcohol-
use disorder. In the future, accounting for such underlying patient
phenotypes could further improve our approach.

Furthermore, within our dataset, we cannot know what caused
the presumptive positive acetaminophen screens in individuals
exposed to carbidopa and levodopa. In general, determining whether
a given drug caused a given lab result is extremely challenging
and can involve dosing human volunteers and performing repeated
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Figure 1. Comparison of calculating potential interference with and without confirmation data. (A) Each plot corresponds to a UDS assay, and each point corre-
sponds to a medication. A log2 (odds ratio for false positives) of NA indicates that the association was not tested because less thanfive individuals had a false
positive UDS result preceded by exposure to the given medication. The assay for cocaine metabolite is not shown as it had no false positives. New interferent
(intentional) indicates a medication we validated in our previous study based on its high odds ratios for false positives on the given assay. New interferent
(incidental) indicates a medication we validated on a different assay than the one for which it had a high odds ratio. (B) Ranks of interfering medications on all
assays based on odds ratio for false positives and odds ratio for presumptive positives. Ranks were calculated on a per-assay basis and excluded assay targets.
Points are slightly jittered to avoid overlap. (C) Number of interfering medications across all assays with an odds ratio in the top k for each assay (where k=5,
10 or 25), excluding assay targets.

testing. Our findings do indicate, however, that (i) individuals
with a documented exposure to carbidopa and levodopa are more
likely to screen positive and (ii) carbidopa and levodopa can cause
positive screens on their own. This combination of empirical asso-
ciation and experimental validation provides evidence that expo-
sure to the medications is causal for some fraction of presumptive
positive results.

Interestingly, the acetaminophen assay’s package insert includes
methyldopa and levodopa (but not carbidopa) on its list of poten-
tially interfering substances but mentions neither the concentration

at which interference was observed nor the type of interference
(positive or negative). While one might assume that anything listed
in the package insert will interfere, none of the other 14 listed com-
pounds were in the top 100 in our analysis. In our experience, this
combination of incompleteness and ambiguity typifies interference
testing summaries of assay package inserts and highlights the need
for more thorough and transparent reporting of assay interferences.

Our findings suggest that statistical analysis of EHR data could
enable ‘postmarketing surveillance’ of an assay’s performance in
routine use. Given the limited number of assay manufacturers,
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Figure 2. Top-ranked medications associated with presumptive positive UDS results for the acetaminophen, ethanol and salicylates assays. Error bars indicate
95% credible intervals. All tested associations for the three assays are in Supplementary Table 4.

Figure 3. Experimental validation of interference on the acetaminophen assay. Dashed lines show the cutoff normally used to call a sample presumptive positive.
The text above each dashed line indicates the estimated minimum concentration at which the test compound would produce a presumptive positive. Both axes
are square-root-transformed to better show the lower concentrations.
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implementation of surveillance programs at several large sites could
be sufficient to uncover the majority of interfering medications.
This information could then be disseminated to benefit the entire
laboratory community.
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