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Summary
Population-scale biobanks linked to electronic health record data provide vast opportunities to extend our knowledge of human genetics

and discover new phenotype-genotype associations. Given their dense phenotype data, biobanks can also facilitate replication studies

on a phenome-wide scale. Here, we introduce the phenotype-genotype reference map (PGRM), a set of 5,879 genetic associations from

523 GWAS publications that can be used for high-throughput replication experiments. PGRM phenotypes are standardized as phecodes,

ensuring interoperability between biobanks.We applied the PGRM to five ancestry-specific cohorts from four independent biobanks and

found evidence of robust replications across a wide array of phenotypes. We show how the PGRM can be used to detect data corruption

and to empirically assess parameters for phenome-wide studies. Finally, we use the PGRM to explore factors associated with replicability

of GWAS results.
Introduction

Over the last decade, experimental methods used to study

the relationship between genetic variants and human

disease at population scale have evolved significantly. Early

genome-wide association studies (GWASs) used pheno-

type-specific cohorts with carefully curated exposures

and outcomes.1,2 More recent discovery research has

gravitated toward multi-purpose biobanks where pheno-

types are defined from a variety of sources, including

electronic health records (EHRs).3–7 As resources with

both breadth and depth, biobanks support both GWASs

for individual traits and phenome-wide association studies

(PheWASs).8 ‘‘High-throughput’’ methods, extensive

catalogs of GWAS results, and precomputed GWAS 3 Phe-

WAS associations, have led to a more fine-grained under-

standing of the genetic underpinnings of complex

disease.9–11

Over time, the datasets used for GWASs have grown in

both size and complexity. Multi-purpose biobanks have

replaced recruited cohorts, and phenotyping algorithms

have replaced physical exams and manual chart review.

The effect of these changes on the reproducibility of

GWAS results is not well understood. Prior work has shown

that high-throughput discovery methods are prone to

errors related to ascertainment bias, phenotype misclassifi-

cation, errors in sample tracking, and missteps in

designing analytic pipelines.12–14 Detecting such problems

in biobank data is challenging. While quality control (QC)
1Department of Biomedical Informatics, Vanderbilt University Medical Center

Genetics, University of Michigan School of Public Health, Ann Arbor, MI 4810

Health, Bethesda, MD, USA; 4Department of Genetics, Stanford University, St

Center, Nashville, TN, USA

*Correspondence: lisa.bastarache@vumc.org

https://doi.org/10.1016/j.ajhg.2023.07.012.

1522 The American Journal of Human Genetics 110, 1522–1533, Sep

� 2023 The Authors. This is an open access article under the CC BY-NC-ND l
metrics are routinely applied to the genotype data,15 anal-

ogous metrics are not yet routinely used for pheno-

type data.

The abundance of phenotype-genotype associations

from prior studies, combined with standardized phecode-

based phenotypes, makes it possible to study replication

on a phenome-wide scale. This can serve three purposes.

First, phenome-wide replication studies can be used as a

practical tool to assess overall data quality, as has been

shown in previous studies.16–18 Because GWAS results are

highly replicable, a new cohort should be able replicate

numerous previously discovered associations (given suffi-

cient power) and inability to do so may indicate of data

quality issues or an incompatibility between the original

and replication analysis.19–21 Second, phenome-wide repli-

cation studies can be used to validate a new analytical tool

or assess analytical parameters used in PheWASs.

Competing methods can be compared in terms of their ca-

pacity to replicate known findings.22 Finally, these studies

can be used to assess the factors associated with replication

across heterogeneous cohorts.23

To facilitate phenome-wide replication studies across

biobanks, we created the phenotype-genotype reference

map (PGRM), a set of genotype associations selected from

the National Human Genome Research Institute and Euro-

pean Bioinformatics Institute (NHGRI-EBI) GWAS cata-

log.24 Best practice guidelines for replication studies

emphasize the importance of aligning the phenotype defi-

nition, cohort composition, and statistical methods used
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in the initial study with those of the replication study, as

well as ensuring adequate power.25 To adhere to these rec-

ommendations, we manually reviewed all GWAS catalog

associations, excluding those that were incompatible

with a replication study in general-purpose biobanks

and including information necessary for power calcula-

tions. Critically, the PGRM represented phenotypes as

phecodes—ICD-based phenotypes developed to conduct

PheWASs. Phecodes are a popular means of high-

throughput phenotyping that have been applied to bio-

banks across the world.26

Tovalidate thePGRM,weattempted to replicatePGRMas-

sociations in four biobanks—BioVU, Michigan Genomics

Initiative biobank (MGI), UK Biobank (UKB), and BioBank

Japan (BBJ)—finding replication was robust for the three

genetic ancestries tested and across disease categories. We

developed simplified replication measures that can be

applied to any EHR-linked biobank cohort. Through a series

of replication experiments, we show how the PGRM can be

used to detect data corruption and assessmodeling assump-

tions inphenome-wide studies. Finally, we identified factors

that predicted replicability of GWAS associations, including

expected factors such as reported odds ratio (OR) and p

value, and unexpected factors such as disease category and

the publication date of the original GWAS. We hope that

the PGRM and publicly available source code will enhance

the rigor of genetic studies using biobanks.
Material and methods

The PGRM is an annotated reference set of phenotype-genotype

associations drawn from the GWAS catalog. In this section, we

describe the creationof thePGRM, including retrievingandfiltering

GWAS catalog associations, mapping diseases to phecodes, normal-

izing genetic variants, and annotating associations by genetic

ancestry and risk alleles. We then explain how we validated the

PGRM by measuring replication rates on cohorts drawn from four

independent biobanks, andhowweused the PGRM to conduct a se-

riesof replicationexperiments. Finally,wedescribe ananalysis using

PGRMtoexplore factors that influence replicabilityofGWASresults.
Creating the PGRM
Retrieving and filtering GWAS catalog associations

Files from the publicly available GWAS catalog were downloaded

on January 4, 2022 (‘‘all associations v1.0.2,’’ ‘‘all studies v1.0.2,’’

and ‘‘all ancestry data v1.0’’). Each row of the ‘‘all association’’

file represents a genotype/phenotype association. We included

SNP/phenotype associations that met the following criteria: (1)

were based on a single-nucleotide polymorphism (SNP) (as

opposed to a haplotype or combination of SNPs), excluding the

X or Y chromosome; (2) had a specified OR and confidence inter-

vals; (3) reported a p value of <5 3 10�8; and (4) were based on a

binary trait modeled as a logistic regression. We excluded contin-

uous traits like blood pressure by using the OR_or_BETA column

(all values < 1), mentions of measurement words (e.g., ‘‘increase,’’

‘‘decrease,’’ ‘‘ratio’’) in the 95_CI_TEXT, and specification of

continuous trait in the DISEASE_TRAIT or P-VALUE (TEXT) field

(e.g., ‘‘age of onset’’).
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Although the conditions necessary to ensure replication across

cohorts are not well characterized, prior work has indicated that

misalignment of study design, cohort composition, and pheno-

type definition decreases the likelihood of replication. Thus, to

maximize the likelihood of replication in a test cohort, we filtered

out GWAS catalog associations with characteristics that were not

aligned with a general population biobank cohort. We manually

extracted and normalized information regarding the phenotype,

study cohort, and statistical model by using information from

the following columns in the GWAS catalog: DISEASE_TRAIT,

P-VALUE (TEXT), STUDY, and BACKGROUND_TRAIT as well as

the study title. When necessary, we reviewed the original manu-

script to resolve ambiguous information provided in these col-

umns. We excluded associations from the PGRM for the following

reasons.
(1) Phenotype misalignment: the catalog includes phenotypes

that are qualified by severity (e.g., mild proteinuria), family

history (e.g., familial lung cancer), age of onset (e.g., early-

onset schizophrenia), and subtype (e.g., ER-breast cancer).

(2) Cohort misalignment: some catalog associations are based

on specialized cohorts wherein all study participants share

a characteristic, defined on the basis of disease (e.g., dia-

betic nephropathy in type 1 diabetes), exposure (e.g., Clos-

tridium difficile infection in antibiotics-users), genetics

(e.g., breast cancer in BRCA1/2 carriers), sex (e.g., hyperten-

sion in males), and young age (e.g., obesity in children).

These are referred to as ‘‘background traits’’ in the GWAS

catalog, and they are sometimes (though not always) anno-

tated in the column of that name.

(3) Non-standard statistical models: while GWAS results are

typically based on logistic regression and additive geno-

type, the catalog includes recessive or dominant associa-

tions models as well those generated from non-standard

models (e.g., family-based models, interactions).

Mapping diseases and traits to phecodes

The GWAS catalog diseases and traits are annotated with the

Experimental Factor Ontology (EFO).27 We attempted to annotate

all EFO terms present in the filtered list of associations with a

matching phecode. We used WikiMedMap to generate candidate

matches and manually chose matching phenotypes.28 Each

phenotype in the PGRM is labeled by one of 13 category labels.

These labels were derived from the phecode category labels, which

were modified for the purposes of this study. The metabolic/endo-

crine categories split into two separate categories. Because there

were very few hematopoietic phenotypes, these were consolidated

into the metabolic category. The ‘‘mental disorders’’ category was

renamed ‘‘psychiatric,’’ and phenotypes for Alzheimer disease and

dementia were added to the ‘‘neurological’’ category. The EFO to

phecode map can be found in Table S1.

Normalizing and annotating genetic variants

We used the Ensembl REST API (https://rest.ensembl.org/) to

annotate each rsID present in the filtered list of associations. We

recorded the allele_string, the location (chromosome and start/

end position), and reference allele frequencies from gnomAD

(EUR, AFR, EAS, SAS, AMR). For each variant, we stored the unique

alleles defined in gnomAD and 1000 Genomes. A variant ID was

created for each non-multi-allelic variant by concatenating the

chromosome, start position, reference allele, and alternate allele

(e.g., 1:62782860:T:C). Each row in the catalog was annotated
nal of Human Genetics 110, 1522–1533, September 7, 2023 1523
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with a variant ID. Variants with more than two alleles specified

were flagged as "multi-allelic" and excluded if the risk allele was

ambiguous in the catalog. The annotation process was conducted

twice: first with build GRCh37 and then with build GRCh38, so

that the PGRM could be used on datasets from either build.

Defining risk alleles

The risk allele is defined as the allele that is associated with

risk of the phenotype (i.e., OR> 1). For each association, we anno-

tated the risk allele as reference (‘‘ref’’) or alternative (‘‘alt’’) accord-

ing to the STRONGEST_SNP_RISK_ALLELE reported in the

catalog. In cases where the catalog did not report a

STRONGEST_SNP_RISK_ALLELE, we determined the risk allele

by matching allele frequencies in gnomAD with the risk allele fre-

quency (RAF) reported in the catalog, matching by ancestry.When

the RAF and risk allele were absent from the catalog or ambiguous,

we labeled the direction as ‘‘unknown.’’ Following association

testing, we check the allele direction against the results of our

five test cohorts. For associations with an unknown direction, if

two or more test cohorts replicated the association at p < 0.05

with the same direction of effect, or if a single cohort replicated

an association with p < 0.01, we set the PGRM direction accord-

ingly. Associations without a clear risk allele were labeled with a

‘‘?’’ and treated as ‘‘alternate’’ in subsequent calculations. Each

row was annotated with the source of information on the allele di-

rection (e.g., risk allele, RAF, one or more test cohorts, or

unknown).

Annotating genetic ancestry

We annotated study cohort ancestry by using the INITIAL SAMPLE

SIZE and REPLICATION SAMPLE SIZE in the ‘‘all ancestry data’’ file

as well as the P-VALUE (TEXT) column. We used the 1000 Ge-

nomes superpopulations ancestry groupings—African (AFR), East

Asian (EAS), European (EUR), admixed American (AMR), South

Asian (SAS)—as well as ‘‘multiple’’ (for cohorts that included >1

genetic ancestry superpopulation) and ‘‘other’’ (including individ-

uals from founder populations or genetic ancestries not covered in

the superpopulations). We excluded catalog associations that were

based onmultiple ancestries or included founder populations. The

number of subjects in the original GWAS were calculated from the

INITIAL SAMPLE SIZE and REPLICATION SAMPLE SIZE columns.

These counts were also ancestry specific.

Consolidating the PGRM

Each association in the PGRM is unique by phenotype, SNP, and

ancestry.When associations were reportedmultiple times in the cat-

alog, only the associationwith the lowest pvaluewas included in the

consolidatedPGRM.Thenumberof times anassociationappeared in

the catalog was stored. The full PGRM is available in Table S2.
Test cohort datasets
All replication experiments were conducted on summary statistics

drawn from four biobanks: BioVU, MGI, UKB, and BBJ. BioVU was

divided into two test cohorts: one of European genetic ancestry

(BioVUEur) and another for African genetic ancestry (BioVUAfr).

These datasets comprised summary statistics for SNP/phenotype

associations present in the PGRM, including betas, standard er-

rors, and p values. The MGI and UKB summary statistics were

drawn from existing datasets described in previous publica-

tions.29,30 The BBJ associations were downloaded from http://

pheweb.jp and are described by Sakaue et al.9 For the BioVU co-

horts, we generated association statistics by using the run_

PGRM_assoc() function from the pgrm R package. The use of the

BioVU data was approved by Vanderbilt’s institutional review
1524 The American Journal of Human Genetics 110, 1522–1533, Sep
board; because of the retrospective design of the specific study

and the use of deidentified data, the board did not require addi-

tional informed patient consent. The BioVU biobank has also

been described in prior publications.31 A description of each

cohort, including phenotype definitions, genotyping platform,

and models, can be found in Table S3.

The BioVU, MGI, and UKB cohorts defined phenotypes via

phecodes (version 1.2; https://phewascatalog.org). The BBJ dataset

comprised GWAS results for 229 phenotypes, 42 of which are

based on ICD-10 codes. We manually identified 59 phenotypes

in the BBJ that were exact matches to phecodes in the PGRM

(Table S4).

We identified all associations that included subjects from BioVU

(or eMERGE), MGI, or UKB by systematically searching for the bio-

bank names in the sourcemanuscripts.We used this annotation in

subsequent replicationmeasures to prevent testing for self-replica-

tion (i.e., replicating anassociation fromUKBwith theUKB cohort)

(Table S5). A complete set of association results from all test cohorts

with annotations from the PGRM can be found in Table S6.

Annotating test cohorts with the PGRM

We annotated the summary statistics of each test dataset by using

the annotate_results() function from the pgrm R package. This

function merges association results from a test cohort with the

PGRM, filtering by the specified ancestry, and annotates the result

set with the following information.

(1) Information from the original GWAS, including the acces-

sion number, summary statistics, and risk allele direction.

(2) Power for each association based on the number of affected

and unaffected individuals from the test cohort, the

ancestry-matched allele frequency from gnomAD, and

the lower confidence interval from the GWAS catalog. Po-

wer is calculated with the genpwr.calc function in the

genpwr R package with an alpha¼ 0.05. We used the lower

confidence interval instead of the point estimate to

compensate for the ‘‘winner’s curse.’’

(3) Replication Boolean value, set to 1 if the test cohort repli-

cated the association. Replication is defined as having

p < 0.05 and OR in the same direction as reported in the

GWAS catalog.

(4) The comparison of the confidence intervals (CIs) from the

original study and test cohort. Associations are labeled

‘‘overlap’’ if the CIs from catalog and test association are

overlapping, ‘‘test_cohort_greater’’ if the lower CI from

the test cohort is higher than the upper CI of the catalog

cohort, and ‘‘PGRM_greater’’ if the lower CI from the

PGRM is higher than the upper CI of the test cohort.

Calculating replication measures in test cohorts

We calculated overall replication rate (RRAll) and powered replica-

tion rate (RRPower) by applying the get_RR() function to the anno-

tated test cohorts.We calculated the actual:expected ratio (AER) by

applying the get_AER() function to each test cohort. The AER is

defined as the total number of replicated associations divided by

the sum of the power over all associations, a measure used by

Palmer and Pe’er.32
Replication experiments
We conducted replication experiments by creating new datasets

with modified phenotype files by using the BioVUEUR test cohort.

We compared these modified datasets to the dataset generated on
tember 7, 2023
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the full BioVUEUR cohort—the ‘‘benchmark dataset’’—to assess the

effects of various phenotype and cohort definitions on replication

measures. The following list describes the way we modified the

BioVUEUR cohort to generate the test datasets.

Randomized phenotypes

We created randomized cohorts by using the BioVUEUR cohort by

randomly shuffling a proportion of the individuals in the pheno-

type and covariate file but not the genotype file. Shuffling was

accomplished with the sample() function in the R base package,

without replacement. We created nine additional cohorts,

randomizing from 10% to 100%, at 10% intervals.

No exclude ranges

We generated a phenotype file without exclude ranges. The bench-

mark analysis used exclude ranges.

Inpatient only

We generated a phenotype file by using only ICD codes from the

inpatient context. The benchmark analysis used ICD codes from

all clinical context (inpatient, outpatient, emergency).

Variable minimum code counts

We defined seven additional phenotype files by using different

minimum code counts (MCCs). TheMCC is the number of unique

dates a phecode occurs in an individual’s record for them to be

classified as affected individuals (i.e., cases). The benchmark anal-

ysis used MCC ¼ 2, and we analyzed phenotype files defined with

MCC ¼ 1 and 3–8.

Cohort size

We created randomly selected sub-cohorts from BioVUEUR, pro-

ducing cohorts that were 75%, 50%, and 25% of the size of the

original cohort.

Annotated summary statistics were generated for each new data-

set and annotated with the run_PGRM_assoc() and annotate_re-

sults() functions from the pgrm package. We compared the results

of the test datasets against the benchmark BioVUEUR results by us-

ing the compare_results_sets() function in the pgrm R package.

This function assesses the difference between replicationmeasures

of two result sets. A Fisher’s exact test compares the results of a

benchmark and modified cohort for each measure (RRAll,

RRPower, and % power).

Cross-ancestry replication experiment

Using the BioVUEUR cohort, we attempted to replicate all associa-

tions in the catalog, regardless of ancestry, for phenotypes with at

least 100 affected individuals. To do so, we used the annotate_re-

sults() function for all five ancestry groups, and we computed

the RRPower and AER for each by using the get_RR() and get_AER

functions. We also computed the replication measures for associa-

tions that were reported in the catalog for a single ancestry versus

multiple ancestries. Finally, we compared the likelihood of replica-

tion for associations that were discovered in European cohorts

alone versus those that were discovered in multiple ancestry co-

horts by using a chi squared test.
Assessing the contents of the PGRM with test cohorts
Comparing replications across test cohorts

We assessed the overlap of successful replications across the three

European test cohorts, including only associations that were

included in all three cohorts, and identified associations that

were not replicated in any of the three cohorts.

Comparing ORs of initial versus replication studies

We compared the ORs in the PGRM with those generated in our

test cohorts by using a paired t test. Only associations that repli-

cated in the test cohorts were included in the analysis.
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Factors of replication

We used a logistic regression model to assess the factors associated

with replication across all five test cohorts, including the following

independent variables in the model: risk allele frequency, number

of affected individuals from the test cohort, lower CI from the cat-

alog, the date of the publication, the number of subjects of the

original study, the number of times the association occurred in

the catalog, the phenotype category, and the ancestry.
Results

Creating the PGRM

We curated associations for the PGRM that are compat-

ible with population-scale biobanks, specifically those

based on adult populations of both sexes that are not

explicitly selected for specific diseases or traits (Figure 1).

At the time of download (2022-01-04), the GWAS catalog

included 320,477 rows, each specifying an association for

a phenotype and genotype. To ensure compatibility with

phecodes, we excluded associations based on continuous

traits (n ¼ 228,853). We also excluded those with missing

statistical information in the catalog (n ¼ 63,324); those

with a reported p > 5 3 10�8 (n ¼ 11,805); and associa-

tions based on genetic variants that were rare (minor

allele frequency [MAF] < 1%) or non-standard genetic

variants (e.g., haplotypes) (n ¼ 1,530). The remaining

14,897 associations were annotated with 655 EFO

terms—the terminology used by the GWAS catalog to

represent diseases and traits—162 of which had a corre-

sponding phecode (version 1.2) that exactly matched

the disease specified in the GWAS catalog. Associations

that did not have a matching phecode were excluded

(n ¼ 3,911). We also excluded 2,252 associations that

were based on modified phenotypes (e.g., ER-breast can-

cer; n ¼ 1632) or specialized cohorts (e.g., breast cancer

in BRCA1/2 carriers; n ¼ 628) or used non-standard statis-

tical models (n ¼ 207).

Due to differences in allele frequency and linkage

disequilibrium (LD) patterns between populations, the

majority of GWAS findings are ancestry specific.33 To

facilitate ancestry-match replication studies, we excluded

1,737 associations on the basis of multi-ancestry or

founder populations. European ancestry was over-repre-

sented in multi-ancestry cohorts: 86% of associations

had a majority of European ancestry subjects. We anno-

tated PGRM associations according to genetic ancestry

of the initial study, including African (AFR; n ¼ 49),

East Asian (EAS; n ¼ 1,215); European (EUR; n ¼
4,568); Latino/admixed American (AMR; n ¼ 30); and

South Asian (SAS; n ¼ 17). 78% of the associations in

the PGRM were based on EUR cohorts.

In total, the PGRM (version 0.0.1) comprises 5,879

unique phenotype-genotype associations drawn from

523 independent GWAS publications. These associations

capture a wide array of diseases, including 149 unique

phecodes from 13 disease categories (Figure S1). The

PGRM includes summary statistics from the original study
nal of Human Genetics 110, 1522–1533, September 7, 2023 1525



Figure 1. Flow diagram of the creation of
the PGRM, beginning with the entire
GWAS catalog at the top, to the associa-
tions included in the PGRM at the bottom
Rounded boxes on the right show the count
of phenotype-genotype associations at each
stage, and squares on the left show the
number of associations filtered out. The bot-
tom row of the figure shows the number of
unique SNP/phenotype associations and
unique phecodes included in each subset.
Ancestry abbreviations are as follows: AFR,
African; AMR, Latino/admixed American;
EAS, East Asian; EUR, European; SAS, South
Asian.
(ORs, 95% CIs, and p values), the PubMed IDs and publica-

tion dates, risk alleles, and variant identifiers for builds

hg19 and hg38.

Developing replication measures for QC and

comparative studies

To address the lack of QC tools designed for biobank data,

we developed replication measures that can be applied to

any EHR-linked biobank. We considered an association

replicated if it had p< 0.05 and a direction of effect consis-

tent with the original study. Power was defined as having

power R 80% with the lower 95% CI from the catalog to

account for winner’s curse.34 The overall replication rate

(RRAll) and powered replication rate (RRPower) describe the

proportion of PGRM associations replicated by a test

cohort (see Box 1 for terms and definitions). A thirdmetric,

the actual:expected ratio (AER), is a similar measure that

includes all PGRM associations, regardless of power. This

metric may be more suitable for smaller association sets
1526 The American Journal of Human Genetics 110, 1522–1533, September 7, 2023
within the PGRM, as it is found in un-

der-represented ancestries.

Applying replication measures to test co-

horts

Replication measures were computed

on summary statistics from five test

cohorts as described in Table 1. The

overall replication rate (RRAll) across

test cohorts ranged from 37%–61%.

The replication measures that took po-

wer into account were more consistent

across cohorts: the RRPower ranged

from 76%–85% and the AER ranged

from 0.78–0.94. The AER utilized an

average of 3.5 times more associations

than the RRPower (Tables 2 and S6).

These replication measures were

computed after excluding 3,180 associ-

ations in the PGRM that were discov-

ered with one or more of the test

cohorts. For these non-independent

associations, the overall replication

rate (RRAll) was higher than the RRAll
of the independent associations (75.1% versus 43.6%), as

expected. These non-independent associations were

excluded from replication analyses with the test cohorts;

over half of the associations derived from BBJ were

excluded in this step, reflecting the outsized role this bio-

bank plays in GWASs for the East Asian population.

PGRM replication experiments

We conducted a series of replication experiments to

demonstrate applications of the PGRM. In these analyses,

we compare the results from the BioVUEur study (i.e., the

‘‘reference cohort’’) to results generated with the same da-

taset after some modification.

Detecting data corruption

We hypothesized that corrupted data would negatively

impact a cohort’s replication rate, resulting in a lower

RRPower and AER. We found that randomizing subjects at

10%increments (startingwitha cohort at0%randomization

and ending with a fully randomized cohort) decreased the



Box 1. Replication measures and definitions

Replication (r): an association with a p value < 0.05 and OR in the same direction as the original study.

Powered (tp): an association with power R 80% (a ¼ 0.05).

Overall replication rate (RRAll): number of replicated associations, r, divided by total number of associations

tested, t.

RRAll ¼ r

t

Power replication rate (RRPowered): number of replicated powered associations, rp, divided by total number of pow-

ered associations tested, tp.

RRPowered ¼ rp
tp

Percent powered: number of powered associations, tp, divided by the number of associations tested, t.

% Powered ¼ tp
t

Actual over expected ratio (AER): number of replicated associations, r, divided by the sum of the power estimate.

AER ¼ r
Pn

i¼1

Poweri
replication rate monotonically. The RRAll and RRPower be-

tween 10% increments was statistically significant for all

pairs tested. A fully randomized cohort yielded an RRPower

of 1.6%, consistent with chance, indicating that this mea-

sure is sensitive to data corruption. (Figure 2A; Table S7).

Testing utility of exclude ranges

Phenome-wide analyses such as PheWAS typically exclude

unaffected individuals (i.e., controls) with similar condi-

tions to the target phenotype (e.g., the phecode for

‘‘migraine’’ excludes unaffected individuals with ‘‘other

headache syndromes’’). Theoretically, excluding unaf-

fected individuals with similar conditions to the target

phenotype should reduce the number of misclassified un-

affected individuals, but its effect on replication has never

been studied systematically. We hypothesized that replica-

tion would be more robust when using those exclude

ranges compared than when not using them. We found

that replication measures were nominally higher for sum-

mary statistics generated with exclude ranges than those

without (RRPower ¼ 76.3% versus 75.0%; AER ¼ 0.81 versus
Table 1. Description of biobank test cohorts

Test cohort Source Genetic ancestry Coho

BioVUEUR BioVU EUR 62,77

MGI Michigan Genomics Initiative EUR 51,39

UKB UK Biobank EUR 407,2

BioVUAFR BioVU AFR 12,14

BBJ BioBank Japan EAS 178,7

The American Jour
0.79), but these differences were not statistically signifi-

cant. (Figure 2B; Table S8A).

Assessing the effect of missing phenotype data

Some biobanks include only a subset of ICD codes. For

example, until recently the UK biobank included only

inpatient ICD codes. However, the effect of missing outpa-

tient codes in a biobank cohort has never formally been

assessed. We tested the hypothesis that phenotypes

defined with inpatient ICD codes alone and excluding co-

des from the outpatient context would decrease both the

power and replication rate of a cohort. Using only inpa-

tient codes did significantly reduce the number of powered

associations, from 853 to 377, and significantly decreased

the RRAll (29.5% versus 41.4%; p ¼ 4.0 3 10�22), but the

RRPower was not significantly different (Table S8B).

Comparing minimum code count (MCC) thresholds

The PheWAS R package defines affected individuals as

those with at least two instances of a phecode or a mini-

mum code count (MCC) of 2. Prior studies have found

anMCC of 2 maximized phenotype accuracy by balancing
rt size PGRM associations tested Unique phenotypes tested

7 3,268 106

3 4,117 109

02 2,238 81

2 31 14

26 384 26
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Table 2. Replication measures for biobank test cohorts

Test cohort % power RRAll RRPower AER

BioVUEUR 26.0% 41.4% 76.3% (651 of 853) 0.81

MGI 22.5% 36.9% 76.1% (706 of 928) 0.79

UKB 38.1% 56.9% 85.2% (727 of 853) 0.94

BioVUAFR 45.2% 61.3% 78.6% (11 of 14) 0.94

BBJ 57.0% 53.4% 76.7% (168 of 219) 0.78

Full results can be found in Table S6.
precision and recall, but these studies were based on a

limited number of phenotypes.26 We used the PGRM to

assess the effect of different MCC on a phenome-wide

scale. Our results showed a tradeoff between power and

replication with increasing MCC. The number of powered

associations was highest at MCC of 1 (n ¼ 1,126) and

lowest at MCC ¼ 8 (n ¼ 458) due to the reduction in

affected individuals. The decrease in powered associations

was most precipitous from MCC of 1–2, where 273 associ-

ations lost power. This decrease was statistically significant

from MCC of 1–4. RRPower increased significantly from

MCC of 1–2 (67.5%–76.3%) and continued to increase

with ascending MCC, though the stepwise differences

were small and not statistically significant. MCC of 2

yielded the most replications overall (n ¼ 1,354), suggest-

ing that this threshold strikes a balance between power

and phenotype accuracy (Figures 2C and 2D; Table S9).

Testing effect of cohort size on replication rate

We found that replication rates were influenced by cohort

size, most likely because of a thresholding effect of power

calculations. The full BioVUEUR (n ¼ 62,777) yields a

RRPower of 76.3%. The RRPower was 74.7% when a random

25% was excluded from the cohort, 69.8% when half the

cohort was excluded, and 65.8% when 75% was excluded.

The AE ratio also decreased (0.81, 0.79, 0.78, and 0.75).

(Table S10)

Cross-ancestry replication experiment

We assessed cross-ancestry replicability by using our

BioVUEUR cohort. We found a RRPower of 195 of 390

(50.0%) of associations from non-European discovery co-

horts (compared with 76.3% in the matched analysis, re-

ported above). Associations that were discovered in both

European and non-European cohorts were more likely to

replicate than those discovered in European ancestry co-

horts alone (RRPowered of 95.1% versus 76.3%, respectively;

p ¼ 6.2 3 10�4). (Tables S11 and S12)

Assessing replicability with biobank test cohorts

We used our biobank test cohorts to assess the replicability

of PGRM associations. First, we looked for associations that

were ‘‘replication-resistant’’ (i.e., associations that did not

replicate in multiple cohorts). Of the 393 associations

that were sufficiently powered in all three European

ancestry cohorts, 22 (5.6%) did not replicate in all three co-

horts. Replication-resistant associations were not restricted
1528 The American Journal of Human Genetics 110, 1522–1533, Sep
to any one phenotype or phenotype category (see

Table S13 for a list of non-replicated associations). 86%

of associations (n ¼ 339) replicated in at least two cohorts,

and 66% (n ¼ 258) replicated in all three (Figure S2).

Comparing ORs

Prior work has shown that GWAS findings are upwardly

biased in terms of reported ORs.32 Therefore, we hypothe-

sized that ORs in the PGRM would be higher than those

derived from the test cohort replications. For the 4,373 as-

sociations that replicated in the test cohorts, we found that

ORs were significantly higher in the PGRM than the test

cohort (t test p ¼ 2.1 3 10�18; 95% OR ¼ 0.05 [0.039–

0.061]) (Figure S3).

Assessing factors of replication

Using multiple logistic regression, we assessed the factors

of PGRM associations that were correlated with replication

in our test cohorts. As expected, factors related to the

strength of the association and power were significantly

associated with replication. Higher OR and lower p values

in the original study were positively correlated with repli-

cation as were the number of affected and unaffected indi-

viduals in the test cohort (p < 0.001; Table 3).

We found that the number of times an association was

reported in the catalog was positively correlated with repli-

cation (p¼ 7.53 10�3; OR¼ 1.15 [1.04–1.27]), as has been

previously reported.16 The size of the original cohort was

inversely correlated with replication (p ¼ 6.0 3 1013,

OR ¼ 0.96 [0.95–0.97]). The date the association was pub-

lished was negatively correlated with replication, such that

the later the association was first published, the less likely

it was to replicate (p ¼ 1.6 3 10�13; OR ¼ 0.94 [0.92–0.95]

per year, after 2005). Eight disease categories were signifi-

cantly less likely to replicate when compared with

neoplasm phenotypes (the largest category of association

and the category with the highest replication rate),

including digestive, endocrine, genitourinary, metabolic,

psychiatric, respiratory, and sense organs. Psychiatric dis-

orders had a notably low likelihood of replicating (p ¼
8 3 10�50; OR ¼ 0.15 [0.12–0.19]).
Discussion

The PGRM is a large set of phenotype-genotype associa-

tions that can be used to conduct replication studies at a
tember 7, 2023



0%

20%

40%

60%

80%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percent randomized

R
R

Po
w

er

A

Inpatient only

No exclude range

0.50 0.75 1.00 1.25 1.50
Odds ratio

B

30%

35%

40%

45%

1 2 3 4 5 6 7 8
Minimum code count

R
R

Al
l

C

1119

853
753

666
602 534 496

458

65%

70%

75%

80%

85%

1 2 3 4 5 6 7 8
Minimum code count

R
R

Po
w

er

D

Figure 2. Replication experiments con-
ducted with the PGRM
(A) The replication rate for the BioVU
cohort was calculated after permuting sub-
ject IDs in the genotype file. The RRPower,
shown as black circles, decreased signifi-
cantly with every additional 10% of sub-
jects that were randomized.
(B) No significant difference was detected
for the odds of replicating in an analysis
that did not use exclude ranges (top line)
or when only inpatient codes were
included (bottom line) when compared to
a reference dataset.
(C) The RRAll for varying minimum code
count (MCC) thresholds are shown as
blue dots. The maximum RRAll was
observed with MCC ¼ 2.
(D) The RRPower for varyingMCC, shown as
red dots. Above the RRPower, the total num-
ber of associations in each analysis are
labeled. The maximum RRPower was
observed for MCC ¼ 8; however, this anal-
ysis only included 485 associations. The
number of powered associations decreased
with increasing MCC.
phenome-wide scale. The use of phecodes in the PGRM en-

sures interoperability with international ICD standards

and a familiar context for researchers who work with

EHR-linked biobanks. Each PGRM association includes in-

formation about the ancestry of the original cohort and

summary statistics to facilitate power calculations. In total,

the PGRM includes 5,879 replication candidates (unique

by SNP, phenotype, and ancestry) drawn from 523

GWASs and spanning 149 distinct diseases across the med-

ical phenome.

Given the high replicability of GWAS findings, we antic-

ipated that PGRM associations would robustly replicate in

our five mature biobank cohorts. Indeed, the overall phe-

nome-wide replication rates were higher than previously

reported, most likely in part because of the larger cohorts

tested in this study.16 The majority (86%) of phenotypes

replicated at least once. We also found replication rates

were comparable across tested ancestry groups. The pow-

ered replication rate was strikingly consistent across test

cohorts, averaging 79% across all cohorts with a range

from 76%–85%.

Through a series of demonstration studies, we showed

how the PGRM can be used to assess data quality and

analytical assumptions. We found that replication mea-

sures are sensitive to random error, indicating that the

PGRMmay be used to detect problems such as inadvertent

shuffling of subject identifiers that may occur in the trans-

fer and processing of large datasets. We also showed how

the PGRM can be used to test the effect of different analyt-

ical parameters used in PheWAS, such as exclude ranges

and minimum code count threshold, and assess the effect

of missing phenotype data.

The PGRM offers a way for researchers to assess phe-

nome-wide parameters in their own datasets. This is

important because the optimal settings for a phenome-
The American Jour
wide analysis will differ depending on the goals of the anal-

ysis and the characteristics of the underlying dataset. Some

analyses might benefit from enhanced precision and

others from increased power. Furthermore, biobank co-

horts (and sub-cohorts therein) differ in terms of longitu-

dinality and density, which means that the effect of

various parameters such as MCC will most likely differ as

well. Therefore, it is likely that the optimal parameters

for an analysis are study dependent. While replication

measures do not tell the whole story, the PGRM is at least

one way of generating empirical evidence for decisions an-

alysts must make when modeling phenome-wide data.

When interpreting PGRM measures, investigators

should be aware that there are multiple reasons beyond

data quality for why a test cohort may yield a low replica-

tion rate. According to best practice guidelines, a replica-

tion study should be conducted with the ‘‘same or very

similar’’ phenotype and a ‘‘similar’’ cohort.25 But there is

much complexity to unpack in this seemingly simple state-

ment. How might we ensure that two phenotypes are

indeed the same when diagnostic criteria for disease may

differ over time and place and, more generally, the notion

of similarity depends on point of view, context, and pur-

pose?35 The question of what makes cohorts similar is at

least as vexing. Cohorts may differ in terms of age struc-

ture, presence of co-morbidities, and environmental expo-

sures, which in turn may influence replicability.36 In an

effort align the original and replication studies, we

excluded from the PGRM associations for modified pheno-

types (e.g., ER-positive breast cancer) and cohorts with

background traits (e.g., non-obese children). However,

because there is no consistent framework used to specify

these attributes, important details may not be present in

the GWAS catalog. Moreover, the effect of background

traits for most phenotype-genotype associations is poorly
nal of Human Genetics 110, 1522–1533, September 7, 2023 1529



Table 3. Factors associated the replication of association from the GWAS catalog

Original association attributes Odds ratio 95% CI p value

Effect sizea 1.24 1.18–1.31 9.0 3 10�17

p valueb 1.07 1.06–1.08 1.1 3 10�92

Risk allele frequency 1.16 0.97–1.39 0.103

Cohort sizec 0.96 0.95–0.97 6.0 3 10�13

GWAS publication dated 0.94 0.92–0.95 1.6 3 10�13

Number of times in catalog 1.15 1.04–1.27 7.5 3 10�3

Test cohort attributes

Casese 1.16 1.14–1.18 1.6 3 10�60

Controlsf 1.02 1.02–1.02 6.4 3 1024

Category

Neoplasms reference – –

Circulatory 1.01 0.83–1.22 0.91

Dermatologic 0.60 0.49–0.74 1.4 3 10�6

Digestive 0.67 0.57–0.78 2.1 3 10�7

Endocrine 0.91 0.74–1.13 0.40

Genitourinary 0.86 0.59–1.26 0.44

Infectious disease 0.42 0.22–0.80 8.0 3 10�3

Metabolic/heme 1.24 0.73–2.09 0.42

Musculoskeletal 0.43 0.33–0.57 6.5 3 10�10

Neurological 0.61 0.50–0.73 1.9 3 10�7

Psychiatric 0.15 0.12–0.19 8.4 3 10�50

Respiratory 0.42 0.34–0.51 4.5 3 10�17

Sense organs 0.50 0.39–0.63 5.1 3 10�9

aEffect size ¼ log(lower 95% confidence interval) reported in the catalog by 0.1 increase.
b�log10(p value).
cNumber of subjects in original study, by 10,000 subjects.
dIn years.
eCases in test cohort; per 1,000 cases.
fControls in test cohort; per 10,000 controls.
understood. Indeed, non-replication may be instrumental

in revealing the scaffolding that supports an observed asso-

ciation.37 Further replication experiments might help

further specify the best practice guidelines by determining

which aspects of phenotypes and cohorts are the most

important to align for replication.

We used the PGRM to study the GWAS catalog itself, iden-

tifying factors that influence the replicability of its findings.

Unsurprisingly, we found factors relating to power (i.e., re-

ported effect size, size of the replication cohort) were posi-

tive correlated with replicability. We also observed less intu-

itive associations. First, replication was inversely correlated

with the size of the discovery cohort. This surprising finding

may be related to what statistician Xiao-Li Meng calls the

‘‘big data paradox,’’ whereby larger datasets are less likely

to yield confidence intervals that encompass the true esti-

mate.38,39 The big data paradox is not caused by the size

of the dataset per se but rather the tradeoff that is often

made between data quantity and quality. Indeed, a study
1530 The American Journal of Human Genetics 110, 1522–1533, Sep
of Alzheimer disease found that larger cohort studies tend

to use noisier phenotypes, which meaningfully altered

phenotype-genotype associations.40 Another study showed

that population controls, which are commonly used in large

biobanks and consortium studies, can produce spurious as-

sociations through exposure-linked selection bias.41 Ques-

tions remain regarding the relevancy of the big data paradox

in genetic research, but our finding suggests that, while the

GWAS paradigm nudges researchers toward to quantity

seeking ever larger cohorts for discovery work, an accompa-

nying focus on data quality would be beneficial. Second, as-

sociations from more recent publications were less likely to

replicate, independent of power and the size of the discov-

ery cohort. The observed decrease in replicability over

timemay be related to the increasing reliance on non-repre-

sentative cohorts in GWASs or the recent concerns that

GWAS has become less transparent and methodologically

rigorous over time; such hypotheses may be the subject of

future replication studies.42,43
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While replication occurred across all 13 disease cate-

gories tested, not all disease categories were equally likely

to replicate. Psychiatric phenotypes were an outlier in

this analysis, with a 0.15 odds of replicating relative to

neoplasm phenotypes. This strikingly low replication

rate, which was observed across all test cohorts, may be

in part attributable to challenges capturing psychiatric

phenotypes at scale with EHR data.44,45 Conversely, highly

replicable GWAS results could suggest high standardiza-

tion regarding capture of disease phenotypes (e.g., neo-

plasms) and/or those phenotypes with strong links to

causal alleles.46

The PGRM is not without limitations. First, non-Euro-

pean ancestry associations are under-represented in the

PGRM, a reflection of the European ancestry bias of

GWASs.47 While the GWAS catalog includes associations

based on multi-ancestry cohorts, the majority of these as-

sociations (86%) were based on predominantly Euro-

pean-ancestry cohorts and were not included in the

PGRM. We hope that calls to increase diversity of the pop-

ulations engaged in genetic research will lead to a more

complete picture of genetic associations in under-studied

ancestries so that the PGRM can expand to include more

diverse ancestry associations.48,49 While ancestry match-

ing is necessary for computing accurate power calcula-

tions, our cross-ancestry analysis suggests that the PGRM

is useful even when ancestry matching is not possible.

The cross-ancestry replication rate was 50%—significantly

lower than that of the matched-ancestry analysis, but far

higher than chance expectations. Moreover, the PGRM

may be useful for identifying cross-ancestry associations,

which prior research suggests aremore likely to be causal.50

A full vetting of the cross-ancestry replicability is beyond

the scope of this paper, but these results shows that the

PGRM can be useful in exploring this important topic

further.51

Second, the PGRM is limited to phecode-based pheno-

types; continuous traits, which make up the majority of

the GWAS catalog, are not currently included. Including

continuous traits would require mapping these traits to

a standardized vocabulary that can be translated across

biobanks. While standards such as LOINC have been

developed, there are challenges to applying these seam-

lessly to real world data.52 However, future iterations of

the PGRM may seek to include these traits in the map.

The PGRM could also evolve to use data sources beyond

ICD codes, such as survey responses. Each addition will

require a new map, like the one we created for BBJ pheno-

types in this analysis, but existing features will still be

applicable.

Third, while the PGRM provides a means for detecting

random error and testing phenotype definitions, it is not

suitable for making direct comparisons regarding data

quality across biobank cohorts. This limitation relates

not only to the multiple and complex causes of non-repli-

cation but also the influence of cohort size on replication

measures. We observed lower replication rates in a random
The American Jour
subset of the BioVU cohort, most likely because of a thresh-

olding effect in power calculations (large cohorts are more

likely to have associations that exceed the number of

affected individuals needed to reach maximum power).

Thus, researchers who use the PGRM to assess data quality

should be aware that smaller cohorts may produce lower

replication rates than were found in this study. Further-

more, studies using the PGRM to compare analytic

methods across two datasets should use cohorts of the

same size.

Replication is a powerful way to assess the data integ-

rity of large, complex biobank datasets and to better

understand analytical assumptions used in modeling

phenome-wide data. To facilitate the use of the PGRM,

we created a publicly available R package that allows

the PGRM to be incorporated into existing biobank QC

pipelines or used to conduct replication experiments.

We hope that the development of this resource can

help maintain the high standards of replicability in the

biobank era.
Data and code availability

The PGRM is available as an R package at https://github.com/

PheWAS/pgrm. The package includes functions to annotate data-

sets with the PGRM and calculate replication measures. The R

package also includes all summary statistics from test cohorts to

facilitate comparative studies. The PGRM and summary statistics

from the five test cohorts used in this paper are also available in

Tables S1 and S6, respectively.
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