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Abstract

Genome-scale data have revealed daily rhythms in various species and tissues. However,

current methods to assess rhythmicity largely restrict their focus to quantifying statistical sig-

nificance, which may not reflect biological relevance. To address this limitation, we devel-

oped a method called LimoRhyde2 (the successor to our method LimoRhyde), which

focuses instead on rhythm-related effect sizes and their uncertainty. For each genomic fea-

ture, LimoRhyde2 fits a curve using a series of linear models based on periodic splines,

moderates the fits using an Empirical Bayes approach called multivariate adaptive shrink-

age (Mash), then uses the moderated fits to calculate rhythm statistics such as peak-to-

trough amplitude. The periodic splines capture non-sinusoidal rhythmicity, while Mash uses

patterns in the data to account for different fits having different levels of noise. To demon-

strate LimoRhyde2’s utility, we applied it to multiple circadian transcriptome datasets. Over-

all, LimoRhyde2 prioritized genes having high-amplitude rhythms in expression, whereas a

prior method (BooteJTK) prioritized “statistically significant” genes whose amplitudes could

be relatively small. Thus, quantifying effect sizes using approaches such as LimoRhyde2

has the potential to transform interpretation of genomic data related to biological rhythms.

Introduction

Much of life on Earth shows rhythms that follow the ~24-hour cycle of day and night. To pro-

duce these daily rhythms, each organism has a system of cell-autonomous oscillators, or circa-

dian clocks, that senses environmental cues and drives cellular, physiological, and behavioral

outputs [1]. In mammals, these clocks “tick” in nearly every tissue [2], although their tissue-

specific mechanisms and inter-tissue interactions are only partially understood [3–6]. To

study circadian systems and their relevance to human health, genome-scale approaches are

invaluable, e.g., revealing mechanisms of intercellular communication in the circadian

response to feeding [7] and highlighting drug targets for circadian medicine [8].

Nonetheless, current methods for analyzing rhythms in genome-scale data have multiple

limitations. Some methods require that timepoints be equally spaced, or assume that rhythms

are sinusoidal. Most importantly, almost all current methods—including our method
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LimoRhyde [9]—focus on hypothesis testing (i.e., p-values and statistical significance), raising

at least two issues [10, 11]. First, the null hypothesis, e.g., that a gene has a log fold-change of

exactly zero, is seldom true. Rather, observed biological effects typically vary from small to

large. Second, statistical significance does not necessarily imply that a result is biologically rele-

vant, since the p-value depends on both the estimated effect size and its uncertainty.

An alternative to calculating p-values is to estimate effect sizes for rhythmic properties (e.g.,

amplitude and phase) directly. The broader field of genomics has developed multiple methods

for estimating effects (e.g., log fold-change) [12–14], which has become an important part of

differential expression analysis. Previous work has applied effect size estimation to biological

rhythms [15], but not to genome-scale data, while other work has incorporated confidence

intervals, but only using cosinor regression on a small set of clock genes [16].

Therefore, we developed LimoRhyde2, a new approach to quantify rhythmicity in genomic

data. LimoRhyde2 integrates and builds on state-of-the-art tools and practices to rigorously

analyze data from genomic experiments [9, 17, 18], capture non-sinusoidal rhythms [19], and

accurately estimate effect sizes [14, 20]. Whereas prior methods to analyze rhythmic data seek

to answer the question “Is there an effect?”, LimoRhyde2 seeks to answer the often more rele-

vant question “How strong is the effect?”. To illustrate LimoRhyde2’s utility, we applied the

method to multiple circadian transcriptome datasets, comparing its output to that of a prior

method. Our findings suggest that LimoRhyde2 can enable new insights into biological

rhythms and circadian systems.

Methods

The LimoRhyde2 R package is available at https://limorhyde2.hugheylab.org. Code, data, and

results for this study are available on Figshare (https://doi.org/10.6084/m9.figshare.22001519).

LimoRhyde2 algorithm

Fit linear models. Similarly to LimoRhyde, LimoRhyde2 starts by fitting a linear model to

the measurements of each genomic feature in the dataset (e.g., expression of each gene). By

default in LimoRhyde2, the model terms for time (e.g., zeitgeber or circadian time) are based

on a periodic cubic spline with three internal knots. Alternatively, the terms for time can be

based on sine and cosine components (i.e., cosinor, the default in LimoRhyde). The model can

include additional terms for covariates, e.g., to account for batch effects, but assumes all sam-

ples come from the same condition. Thus, the model could be

E yg;i

� �
¼ bg;0 þ

Xn

j¼1

bg;jBj yið Þ

Where E(yg,i) is the expected (log-transformed) measurement for feature g in sample i, βg,j are

the unknown coefficients for feature g, n is the number of spline knots, Bj are the periodic

spline basis functions with period τ, yi ¼
2pti
t

, and ti is the time for sample i. LimoRhyde2 fits

the models, i.e., estimates the coefficients, using limma-trend, limma-voom [25, 26], or

DESeq2 [12], all state-of-the-art approaches for analyzing genomic data.

In initial testing we observed that the fitted curves of the periodic spline sometimes varied

noticeably depending on the locations of the spline knots, particularly for more rhythmic

genes. To avoid this behavior and make the fits more robust if the linear model is based on

periodic splines (not cosinor), LimoRhyde2 repeats the above procedure multiple times, fitting

a series of models for each feature such that the locations of the knots in each model are shifted

by a different amount. For m shifted models (default 3), the value of the shift dk for model k is
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set to

dk ¼
k � 1ð Þ � t

m � nþ 1ð Þ

The overall raw fit fg,k(t,. . .) for feature g is calculated as

fg t; :::ð Þ ¼
1

m

Xm

k¼1

fg;k t; :::ð Þ

where fg,k(t,. . .) indicates the expected measurement of feature g according to model k, as a

function of time t and any covariates.

Moderate model coefficients. LimoRhyde2 then moderates the model coefficients to

obtain posterior fits using multivariate adaptive shrinkage (Mash) [14], which uses Empirical

Bayes to learn patterns of similarity between coefficients and to improve estimates of effect

sizes. LimoRhyde2 runs Mash on the coefficients for time for all shifted models. LimoRhyde2

does not moderate the intercept coefficients, as the relatively large number of samples in typi-

cal circadian transcriptome experiments makes these coefficients’ standard errors (and the

effect of Mash) quite small. By default, LimoRhyde2 runs Mash with data-driven covariance

matrices, computed based on principal component analysis of strong signals in the data, with

the number of principal components set to the number of spline knots. Given the raw esti-

mates and standard errors for each coefficient for each feature, Mash computes corresponding

posterior distributions, including posterior means and standard deviations. Mash’s approach

to estimating posteriors takes the place of the usual multiple testing adjustment, e.g., estima-

tion of false discovery rates.

Calculate rhythm statistics. LimoRhyde2 then uses the moderated coefficients (or

optionally, the raw coefficients) to calculate the following rhythm statistics, i.e., properties of

the fitted curve with respect to time between 0 and τ of each feature:

• mesor (mean value)

• peak or maximum value

• peak phase (time at which the peak value occurs)

• trough or minimum value

• trough phase (time at which the trough value occurs)

• peak-to-trough amplitude (peak value minus trough value)

• root mean square (RMS) amplitude, calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

Z t

0

f tð Þ � E f tð Þ½ �ð Þ
2 dt

r

, where

E f tð Þ½ � ¼ 1

t

Z t

0

f tð Þdt

Quantify uncertainty. To quantify uncertainty in the fits, LimoRhyde2 can draw samples

from the posterior distributions computed by Mash. For each posterior sample, which corre-

sponds to a set of possible model coefficients for each feature, LimoRhyde2 can calculate the

expected measurement of each feature as a function of time (and possibly any covariates), as

well as the corresponding rhythm statistics. LimoRhyde2 then uses the resulting posterior dis-

tributions to calculate quantities such as the 90% (equal-tailed or highest-density) credible

interval, the Bayesian analogue of a confidence interval.
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Because amplitude estimates are non-negative, a credible interval based only on the poste-

rior samples’ amplitudes would nearly always be strictly positive (implying that that feature is

rhythmic). This would preclude the credible interval from crossing zero, even if the rhythm

were quite weak and the posterior samples’ phases were highly variable. Thus, LimoRhyde2

constructs credible intervals for peak-to-trough amplitude and RMS amplitude by first chang-

ing the sign (from positive to negative) of amplitudes for posterior samples whose peak phase

is greater than t

4
away in either direction from the circular mean peak phase (weighted by

amplitude). In this way, the credible interval for a rhythm whose amplitude is highly uncertain

can span zero.

Processing circadian transcriptome data from mice

For microarray data from mouse lung (GSE59396), we used the seeker R package [27] to

download the sample metadata and processed (Illumina) expression data from NCBI GEO,

map probes to Entrez Gene IDs [28], and return log2-transformed expression values. For

RNA-seq data from mouse liver (GSE67305) and suprachiasmatic nucleus (SCN) (GSE72095),

we used seeker to download the sample metadata and to download and process the raw reads.

We processed the data using Trim Galore for adapter and quality trimming [29], FastQC [30]

and MultiQC [31] for quality control, and salmon [32] and tximport [33] for quantifying

gene-level counts and abundances based on Ensembl Gene IDs. We obtained the transcrip-

tome index for salmon using refgenie [34]. Based on the plotMDS function from the limma

package, we removed from analysis one extreme outlier sample from GSE59396. For

GSE67305 and GSE72095, we kept only those genes having counts per million (CPM)� 0.5 in

at least 75% of samples (irrespective of timepoint). To avoid unrealistically low log-trans-

formed CPM values and artificially inflated effect size estimates, for each sample-gene combi-

nation that had zero counts, we impute the counts as the minimum of the non-zero counts

across all samples for that gene.

Quantifying rhythmicity using LimoRhyde2

We ran LimoRhyde2 using three knots (or using a cosinor model where noted), a period of 24

h, and either limma-trend (for GSE59396) or limma-voom (for GSE67305 and GSE72095).

Where applicable, we calculated 90% equal-tailed credible intervals based on 200 posterior

samples.

Detecting rhythmicity using BooteJTK

To compare performance of a prior method for detecting rhythmicity in genomic data, we

used BooteJTK (source code from https://github.com/alanlhutchison/BooteJTK). BooteJTK

performs hypothesis testing for rank-order correlation between a feature’s time series and a set

of reference waveforms, using parametric bootstrapping to account for measurement uncer-

tainty. We ran BooteJTK using the default settings. In particular, we generated 25 bootstrap

resamples of each gene’s time series, used a period of 24 h, treated samples collected 24 h apart

as replicates, and searched for phases and asymmetries at 2-h intervals from 0 to 22 h. For each

dataset, we passed BooteJTK the log-transformed microarray expression values or the

log2(cpm + 1) values for the same set of genes that we passed to LimoRhyde2. We adjusted the

resulting p-values using the Benjamini-Hochberg (BH) method to control the false discovery

rate [35]. To quantify agreement between LimoRhyde2 and BooteJTK in ranking rhythmic

genes, we calculated Cohen’s kappa using the irr R package. To quantify the circular correla-

tion of the two methods’ phase estimates in each dataset, we used the circ.cor2 function of the
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Directional R package, and included only those genes having a BooteJTK adjusted p-

value� 0.2 and a LimoRhyde2 amplitude in the upper 10 percent.

Results

To demonstrate how LimoRhyde2 quantifies rhythmicity, we applied it to transcriptome data-

sets from a range of tissues, experimental designs, and measurement techniques [36–38]

(Table 1). We used LimoRhyde2 to fit periodic spline-based linear models for each gene (raw

fits), moderate the raw fits using Mash (producing posterior fits), and calculate each gene’s

rhythm statistics based on the raw and posterior fits (Fig 1). As expected, the posterior fits

tended to have lower rhythm amplitudes compared to the raw fits (Fig 2), and higher standard

errors in the raw fits led to greater amplitude reduction in the posterior fits for many genes (S1

Fig). In addition, the periodic splines allowed LimoRhyde2 to fit rhythms that appeared non-

sinusoidal, avoiding the occasional poor fit of the cosinor model (S2 Fig).

To compare LimoRhyde2 to a prior method for detecting rhythmicity, we analyzed the

same data using BooteJTK [21], a refinement of the popular JTK_CYCLE [39] that accounts

for measurement uncertainty. Like other prior methods, BooteJTK calculates a p-value (an

estimate of the probability that a given feature is not rhythmic) for each genomic feature,

which can then be used for ranking. As LimoRhyde2 does not calculate p-values, but instead

estimates a gene’s rhythm, a convenient way to use its output to rank genomic features is by

posterior amplitude. Importantly, the raw fits do not account for standard error and are there-

fore unreliable indicators of true effect size.

Across the three datasets, we found the adjusted p-values from BooteJTK were only mod-

estly correlated with the amplitudes from LimoRhyde2 (Fig 3A; mean Spearman correlation

0.72). Whereas BooteJTK prioritized monotonic rhythms with high signal-to-noise but per-

haps relatively low amplitude, LimoRhyde2 prioritized high-amplitude rhythms of various

shapes (Fig 3B). Accordingly, the two methods showed relatively weak agreement in the top-

ranked genes in each tissue (Fig 3C). In contrast, the two methods’ phase estimates were highly

correlated (mean circular correlation 0.86). The two methods differed markedly in runtime: 2

minutes for LimoRhyde2 and 73 minutes for BooteJTK (mean per study, LimoRhyde2 run in

parallel on 6 cores, BooteJTK does not run in parallel).

As a typical use case, we further analyzed the posterior fits and statistics from LimoRhyde2

for each dataset. Here, we also used LimoRhyde2’s ability to sample from the posterior distri-

butions to quantify uncertainty as 90% credible intervals (Fig 4). As expected, a noisy fit, such

as that of Nr1d1 in the SCN, led to a credible interval for amplitude that spanned zero (Fig

4A–4C). Consistent with prior work [40], most clock genes showed high amplitudes in each

tissue (S3 Fig), although some of the highest-amplitude genes were tissue-specific (Fig 4D).

Contrary to previous findings [41], the highest-amplitude genes tended to be moderately

expressed, not the most highly expressed (S4A Fig). Furthermore, among the top 25% of genes

by amplitude, the joint distribution of amplitude and phase, as well as the marginal distribu-

tion of phase, differed widely by tissue (S4 Fig). Overall, these results illustrate the value of

LimoRhyde2’s approach to quantifying rhythmicity.

Table 1. Characteristics of the three circadian transcriptome datasets used for validation.

Study Reference Platform Tissue Interval (h) Num. of biological samples Light-dark regimen

GSE59396 [36] microarray (Illumina beadchip) lung 4 36 LD 12:12

GSE67305 [38] RNA-seq (100 bp single-end) liver 2 24 LD 12:12

GSE72095 [37] RNA-seq (100 bp paired-end) suprachiasmatic nucleus (SCN) 4 18 LD 12:12

https://doi.org/10.1371/journal.pone.0292089.t001

PLOS ONE LimoRhyde2: Genomic analysis of biological rhythms based on effect sizes

PLOS ONE | https://doi.org/10.1371/journal.pone.0292089 December 14, 2023 5 / 15

https://doi.org/10.1371/journal.pone.0292089.t001
https://doi.org/10.1371/journal.pone.0292089


Fig 1. Schematic overview of LimoRhyde2’s approach to quantifying rhythmicity in genomic data. Given a genomic feature (row) by sample

(column) matrix of measurements, LimoRhyde2 fits a curve (dashed orange line) based on periodic splines describing how each feature’s measurements

change as a function of time. To adjust for noise and uncertainty in the fits, LimoRhyde2 uses Mash to moderate the model coefficients, yielding a

posterior fit (solid green line) for each feature. Using the posterior fits and their distributions, LimoRhyde2 calculates rhythm statistics and credible

intervals.

https://doi.org/10.1371/journal.pone.0292089.g001
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Discussion

Genomic data have yielded valuable insights into circadian systems and their relevance to

human health, but previous methods for genomic analysis of biological rhythms have multiple

limitations, perhaps the most severe being an overreliance on p-values and statistical

significance.

Fig 2. LimoRhyde2 uses raw fits and their standard errors to obtain posterior fits. (A) Scatterplots of posterior

peak-to-trough amplitude vs. raw peak-to-trough amplitude for transcriptome data from mouse liver (GSE67305),

lung (GSE59396), and SCN (GSE72095). Points represent genes, color represents log2 mean standard error of the

gene’s raw fit. Dashed lines indicate y = x. (B) Time-courses of expression of genes (sorted by posterior amplitude)

labeled in (A) in the respective tissue. Curves represent fits calculated by LimoRhyde2. Points represent samples.

https://doi.org/10.1371/journal.pone.0292089.g002
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LimoRhyde2’s posterior estimates—fitted curves, resulting statistics, and credible intervals

—account for uncertainty in the raw estimates and for different patterns of rhythmicity. This

aspect of LimoRhyde2 is enabled by Mash [14], which uses shrinkage to share information

among genomic features. This shrinkage of the coefficients and their standard errors is distinct

Fig 3. LimoRhyde2 prioritizes high-amplitude rhythms, compared to BooteJTK. (A) Scatterplots of -log10 adjusted

p-value calculated by BooteJTK vs. posterior peak-to-trough amplitude calculated by LimoRhyde2 for each tissue

(indicated at top). Points represent genes. Genes towards the top are prioritized by BooteJTK, genes to the right are

prioritized by LimoRhyde2. (B) Time-courses of expression of genes (indicated at top) labeled in (A) in the respective

tissue (indicated at right). Points represent samples. Colors represent relative ranking of the genes according to the two

methods. Curves represent posterior fits calculated by LimoRhyde2. Each gene’s expression is centered at zero to

highlight differences in amplitude. (C) Interrater agreement, as quantified by Cohen’s κ, of top-ranked genes based on

LimoRhyde2 posterior amplitude and BooteJTK -log10 adjusted p-value. Shape and color represent tissue.

https://doi.org/10.1371/journal.pone.0292089.g003
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from that applied by limma to residual variances, which in practice have little effect given the

relatively large sample sizes of circadian experiments. Such sharing by Mash may reduce good-

ness of fit for any one genomic feature, but is a well-validated strategy to prevent overfitting

and improve estimates [14, 20], while avoiding the danger that “statistically significant” results

Fig 4. LimoRhyde2 quantifies uncertainty in rhythmicity using credible intervals. (A) Time-courses of expression for selected genes (indicated by

color and at top) in the SCN. Points represent samples. Curves represent fits from 200 draws from the posterior distributions. (B) Time-courses of

expression, where lines represent posterior means and ribbons represent 90% credible intervals calculated from the posterior draws. (C) Density plots of

peak-to-trough amplitude based on the posterior draws. Dashed line indicates 0 amplitude. Shaded regions represent lower and upper bounds of the

90% credible intervals. Vertical colored lines represent posterior means of amplitude. Horizontal colored lines represent 90% credible intervals. (D)

Amplitudes and corresponding 90% credible intervals for the top 20 genes ranked by amplitude in each tissue (indicated at top). Color represents peak

phase.

https://doi.org/10.1371/journal.pone.0292089.g004
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can imply overestimated effect sizes [42]. Furthermore, LimoRhyde2’s approach bypasses the

need to consider both raw amplitude and p-value, which would require another arbitrary cut-

off [43, 44]. Thus, in LimoRhyde2, genome-scale data are neither a burden (for multiple test-

ing) nor a curse (of dimensionality), but rather, an advantage.

Traditionally, efforts to understand the core circadian clock in various species have focused

less on rhythm amplitude than on period and phase. However, the goal of genomic studies is

often not to understand the core clock itself, but rather to determine how the clock and daily

rhythms influence physiology. In this respect, amplitude may be as relevant as period and

phase. For example, a protein whose mRNA shows a rhythm amplitude of 3 log2CPM may be

a more promising target for circadian medicine than one whose mRNA shows an amplitude of

only 0.3.

Given the distinct goals of LimoRhyde2 compared to previous methods (Table 2), the rele-

vant differences between the methods’ output are not quantifiable in terms related to binary

classification (precision, recall, false positive, etc.). Therefore, we opted to analyze real circa-

dian transcriptome data rather than simulated data, whose generation requires many simplify-

ing assumptions. Although the true effect sizes in these data are unknown, our results indicate

that LimoRhyde2 efficiently prioritizes large effects that have functional significance in the cir-

cadian system yet would have been underappreciated by methods dependent on p-values and

statistical significance.

For example, among the genes ranked considerably higher by LimoRyde2 (amplitude) than

by BooteJTK in the liver were Rgs16, Dhrs9, and Mt2. Rgs16 regulates daily rhythms of G-pro-

tein signaling in the SCN [45] and substrate oxidation in hepatocytes [46]. Dhrs9 belongs to a

set of genes whose expression forms a robust biomarker of internal circadian time from

human blood [47]. Mt2 (metallothionein 2) was previously shown in a targeted study to have a

dramatic diurnal rhythm [48]. Among genes ranked highly by LimoRhyde2 in the lung were

Fkbp5 and Adamts4. The former encodes a negative-feedback regulator of glucocorticoid sig-

naling [49], which plays an important role in synchronizing daily rhythms across tissues [50],

while the latter is a clock-controlled gene in mouse cartilage [51] and human corneal endothe-

lial cells [52]. Among genes ranked highly in the SCN were Nfkbib, which encodes an inhibitor

of NF-κB signaling and whose expression is regulated in microglia by the clock gene Nr1d1

[53], and Id1, which may play a role in photic entrainment of the circadian system [54].

Despite its advantages, LimoRhyde2 still has limitations and opportunities for future

improvements. First, we have only validated LimoRhyde2 for quantifying rhythmicity within a

single condition, not for quantifying differences in rhythmicity between conditions. Second,

LimoRhyde2 assumes that the rhythms have a user-specified period shared by all genomic fea-

tures. Although it is possible to run LimoRhyde2 multiple times on the same dataset, varying

the period each time, we recommend instead using a single period and allowing the periodic

spline to capture non-monotonic (and potentially ultradian) rhythms. As with other methods,

Table 2. Comparison of several methods for genome-scale rhythmicity analysis.

LimoRhyde2 BooteJTK CircaN RAIN dryR

Reference this paper [21] [22] [23] [24]

Type of inference effect size estimation hypothesis testing hypothesis testing hypothesis testing model selection

Type of model parametric non-parametric parametric non-parametric parametric

Accounts for non-sinusoidal rhythms ✓ ✓ - ✓ -

Handles unevenly spaced timepoints ✓ - ✓ ✓ ✓

Handles covariates ✓ - - - -

https://doi.org/10.1371/journal.pone.0292089.t002
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the ability to reliably detect and quantify ultradian rhythms will depend on the sampling inter-

val and the signal-to-noise ratio. Third, LimoRhyde2 assumes that each feature’s rhythm is

fixed. Consequently, LimoRhyde2 does not model amplitude decay [55], although it can

model time-dependent trends in mesor.

Just as prior methods cannot determine what level of adjusted p-value qualifies as “signifi-

cant” (the conventional level of 0.05 being arbitrary), LimoRhyde2 cannot determine what

magnitude of a given rhythm statistic is biologically meaningful. Such values likely vary from

one gene to another anyway, so it remains possible that LimoRhyde2 could deemphasize bio-

logically meaningful rhythms of low amplitude. When performing follow-up computational

analyses, we recommend using the full distribution of a given statistic rather than drawing arti-

ficial cutoffs such as “rhythmic” and “arrhythmic”. As a convenient reference for rhythm

amplitudes, our results indicate that the core clock genes in wild-type mouse liver have a

median peak-to-trough amplitude of ~3.3 (log2CPM in RNA-seq). In addition, LimoRhyde2

cannot determine what range of credible interval is most biologically relevant. In the current

analysis, we elected for simplicity and ranked genes only by the point estimates of amplitude.

Future work can explore how credible intervals should inform follow-up analyses and experi-

ments. However, no amount of statistical wizardry is likely to overcome low biological replica-

bility [56].

By directly estimating biological rhythms and their uncertainty, LimoRhyde2 seeks to shift

the focus of an analysis from detecting statistical significance to interpreting biological rele-

vance. Although we have so far only validated LimoRhyde2 on bulk transcriptome data, recent

work showed that the same state-of-the-art methods that underlie LimoRhyde2 are well-suited

to analysis of single-cell RNA-seq data [43]. Thus, LimoRhyde2 may provide a basis for using

various genomic techniques to improve our understanding of biological rhythms.

Supporting information

S1 Fig. LimoRhyde2 moderates amplitude based on standard errors of genes. Scatterplots

of difference between raw and posterior peak-to-trough amplitude vs log2 mean standard

error of the raw fit for genes in each tissue. Points represent genes.

(TIF)

S2 Fig. LimoRhyde2’s spline-based model is more flexible and tends to give higher ampli-

tude than the cosinor model. (A) Scatterplots of cosinor posterior peak-to-trough amplitude

vs. spline posterior peak-to-trough amplitude for each tissue (indicated at top). Points repre-

sent genes. Dashed lines indicate y = x. (B) Time-courses of expression of genes labeled in (A)

in the respective tissue (indicated at right). Points represent samples. Curves represent poste-

rior fits for the two models.

(TIF)

S3 Fig. LimoRhyde2 identifies generally strong rhythms of core clock genes. Posterior

peak-to-trough amplitudes and corresponding 90% credible intervals for core clock genes in

each tissue. Points represent genes, color represents peak phase for each gene. Dashed lines
indicate 0 amplitude.

(TIF)

S4 Fig. Distributions of rhythmicity based on LimoRhyde2 posterior statistics. Scatterplots

of (A) peak-to-trough amplitude vs. mesor and (B) peak-to-trough amplitude vs. peak phase

for genes in each tissue (indicated at top). Points represent genes. (C) Histograms of peak

phase. All plots include only the top 25% of genes based on amplitude.

(TIF)
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